Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comput Chem ; 36(15): 1114-23, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25809959

RESUMO

This article reports a combined quantum mechanics/molecular mechanics (QM/MM) investigation on the acid hydrolysis of cellulose in water using two different models, cellobiose and a 40-unit cellulose chain. The explicitly treated solvent molecules strongly influence the conformations, intramolecular hydrogen bonds, and exoanomeric effects in these models. As these features are largely responsible for the barrier to cellulose hydrolysis, the present QM/MM results for the pathways and reaction intermediates in water are expected to be more realistic than those from a former density functional theory (DFT) study with implicit solvent (CPCM). However, in a qualitative sense, there is reasonable agreement between the DFT/CPCM and QM/MM predictions for the reaction mechanism. Differences arise mainly from specific solute-solvent hydrogen bonds that are only captured by QM/MM and not by DFT/CPCM.


Assuntos
Celulose/química , Teoria Quântica , Configuração de Carboidratos , Glicosídeos , Hidrólise , Modelos Moleculares , Solventes
2.
Chemistry ; 21(14): 5477-87, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25689773

RESUMO

We explore the influence of two solvents, namely water and the ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent-cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent.

3.
Chemistry ; 20(38): 12298-309, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25156402

RESUMO

A joint experimental and computational study on the glucose-fructose conversion in water is reported. The reactivity of different metal catalysts (CrCl3, AlCl3, CuCl2, FeCl3, and MgCl2) was analyzed. Experimentally, CrCl3 and AlCl3 achieved the best glucose conversion rates, CuCl2 and FeCl3 were only mediocre catalysts, and MgCl2 was inactive. To explain these differences in reactivity, DFT calculations were performed for various metal complexes. The computed mechanism consists of two proton transfers and a hydrogen-atom transfer; the latter was the rate-determining step for all catalysts. The computational results were consistent with the experimental findings and rationalized the observed differences in the behavior of the metal catalysts. To be an efficient catalyst, a metal complex should satisfy the following criteria: moderate Brønsted and Lewis acidity (pKa = 4-6), coordination with either water or weaker σ donors, energetically low-lying unoccupied orbitals, compact transition-state structures, and the ability for complexation of glucose. Thus, the reactivity of the metal catalysts in water is governed by many factors, not just the Lewis acidity.


Assuntos
Frutose/química , Glucose/química , Metais/química , Biomassa , Catálise , Cloretos/química , Ácidos de Lewis/química
4.
Chemistry ; 19(48): 16282-94, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24136817

RESUMO

The molecular understanding of the chemistry of 1,4-ß-glucans is essential for designing new approaches to the conversion of cellulose into platform chemicals and biofuels. In this endeavor, much attention has been paid to the role of hydrogen bonding occurring in the cellulose structure. So far, however, there has been little discussion about the implications of the electronic nature of the 1,4-ß-glycosidic bond and its chemical environment for the activation of 1,4-ß-glucans toward acid-catalyzed hydrolysis. This report sheds light on these central issues and addresses their influence on the acid hydrolysis of cellobiose and, by analogy, cellulose. The electronic structure of cellobiose was explored by DFT at the BB1 K/6-31++G(d,p) level. Natural bond orbital (NBO) analysis was performed to grasp the key bonding concepts. Conformations, protonation sites, and hydrolysis mechanisms were examined. The results for cellobiose indicate that cellulose is protected against hydrolysis not only by its supramolecular structure, as currently accepted, but also by its electronic structure, in which the anomeric effect plays a key role.


Assuntos
Celobiose/química , Celulose/química , Ligação de Hidrogênio , Hidrólise , Estrutura Molecular , Termodinâmica
5.
Org Lett ; 15(7): 1682-5, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23521166

RESUMO

DFT calculations are used to investigate the mechanism of the Pummerer reaction between a chiral sulfoxide and acetic anhydride under classical and stereoselective reaction conditions (without and with additives, respectively). The first step involving acetylation of the sulfoxide with release of acetate is found to be rate-determining in both cases. For the stereoselective Pummerer reaction in the presence of trimethylsilyl triflate (TMSOTf) and N,N-dimethylacetamide (DMAC), TMSOTf- and DMAC-assisted transition states as well as ion exchange reactions are considered to account for the role of TMSOTf and DMAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA