Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 126(10): 2627-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23928861

RESUMO

Flax (Linum usitatissimum L.) is one of the richest plant sources of omega-3 fatty acids praised for their health benefits. In this study, the extent of the genetic variability of genes encoding stearoyl-ACP desaturase (SAD), and fatty acid desaturase 2 (FAD2) and 3 (FAD3) was determined by sequencing the six paralogous genes from 120 flax accessions representing a broad range of germplasm including some EMS mutant lines. A total of 6 alleles for sad1 and sad2, 21 for fad2a, 5 for fad2b, 15 for fad3a and 18 for fad3b were identified. Deduced amino acid sequences of the alleles predicted 4, 2, 3, 4, 6 and 7 isoforms, respectively. Allele frequencies varied greatly across genes. Fad3a, with 110 SNPs and 19 indels, and fad3b, with 50 SNPs and 5 indels, showed the highest levels of genetic variations. While most of the SNPs and all the indels were silent mutations, both genes carried nonsense SNP mutations resulting in premature stop codons, a feature not observed in sad and fad2 genes. Some alleles and isoforms discovered in induced mutant lines were absent in the natural germplasm. Correlation of these genotypic data with fatty acid composition data of 120 flax accessions phenotyped in six field experiments revealed statistically significant effects of some of the SAD and FAD isoforms on fatty acid composition, oil content and iodine value. The novel allelic variants and isoforms identified for the six desaturases will be a resource for the development of oilseed flax with unique and useful fatty acid profiles.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Linho/enzimologia , Linho/genética , Genes de Plantas/genética , Variação Genética , Alelos , Sequência de Bases , Mutação INDEL/genética , Isoenzimas/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética
2.
Mol Biotechnol ; 56(7): 609-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24522837

RESUMO

With 45 % or more oil content that contains more than 55 % alpha linolenic (LIN) acid, linseed (Linum usitatissimum L.) is one of the richest plant sources of this essential fatty acid. Fatty acid desaturases 2 (FAD2) and 3 (FAD3) are the main enzymes responsible for the Δ12 and Δ15 desaturation in planta. In linseed, the oilseed morphotype of flax, two paralogous copies, and several alleles exist for each gene. Here, we cloned three alleles of FAD2A, four of FAD2B, six of FAD3A, and seven of FAD3B into a pYES vector and transformed all 20 constructs and an empty construct in yeast. The transformants were induced in the presence of oleic (OLE) acid substrate for FAD2 constructs and linoleic (LIO) acid for FAD3. Conversion rates of OLE acid into LIO acid and LIO acid into LIN acid were measured by gas chromatography. Conversion rate of FAD2 exceeded that of FAD3 enzymes with FAD2B having a conversion rate approximately 10 % higher than FAD2A. All FAD2 isoforms were active, but significant differences existed between isoforms of both FAD2 enzymes. Two FAD3A and three FAD3B isoforms were not functional. Some nonfunctional enzymes resulted from the presence of nonsense mutations causing premature stop codons, but FAD3B-C and FAD3B-F seem to be associated with single amino acid changes. The activity of FAD3A-C was more than fivefold greater than the most common isoform FAD3A-A, while FAD3A-F was fourfold greater. Such isoforms could be incorporated into breeding lines to possibly further increase the proportion of LIN acid in linseed.


Assuntos
Ácidos Graxos Dessaturases/genética , Linho/genética , Variação Genética , Óleo de Semente do Linho/metabolismo , Alelos , Sequência de Aminoácidos , Clonagem Molecular , Ácidos Graxos Dessaturases/metabolismo , Linho/enzimologia , Regulação da Expressão Gênica de Plantas , Ácido Linoleico/metabolismo , Óleo de Semente do Linho/química , Ácido Oleico/metabolismo , Isoformas de Proteínas/genética , Saccharomyces cerevisiae , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA