Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(18): e0106222, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36036577

RESUMO

Cell fusing agent virus (CFAV) is an insect-specific flavivirus (ISF) found in Aedes aegypti mosquitoes. ISFs have demonstrated the ability to modulate the infection or transmission of arboviruses such as dengue, West Nile, and Zika viruses. It is thought that vertical transmission is the main route for ISF maintenance in nature. This has been observed with CFAV, but there is evidence of horizontal and venereal transmission in other ISFs. Understanding the route of transmission can inform strategies to spread ISFs to vector populations as a method of controlling pathogenic arboviruses. We crossed individually reared male and female mosquitoes from both a naturally occurring CFAV-positive Ae. aegypti colony and its negative counterpart to provide information on maternal, paternal, and horizontal transmission. RT-PCR was used to detect CFAV in individual female pupal exuviae and was 89% sensitive, but only 42% in male pupal exuviae. This is a possible way to screen individuals for infection without destroying the adults. Female-to-male horizontal transmission was not observed during this study. However, there was a 31% transmission rate from mating pairs of CFAV-positive males to negative female mosquitoes. Maternal vertical transmission was observed with a filial infection rate of 93%. The rate of paternal transmission was 85% when the female remained negative, 61% when the female acquired CFAV horizontally, and 76% overall. Maternal and paternal transmission of CFAV could allow the introduction of this virus into wild Ae. aegypti populations through male or female mosquito releases, and thus provides a potential strategy for ISF-derived arbovirus control. IMPORTANCE Insect-specific flaviviruses (ISFs), are a group of nonpathogenic flaviviruses that only infect insects. ISFs can have a high prevalence in mosquito populations, but their transmission routes are not well understood. The results of this study confirm maternal transmission of cell fusing agent virus (CFAV) and demonstrate that paternal transmission is also highly efficient. Horizontal transmission of CFAV was also observed, aided by evaluation of the pupal infection status before mating with an infected individual. This technique of detecting infection in discarded pupae exuviae has not been evaluated previously and will be a useful tool for others in the field of studying viral transmission in mosquitoes. Identifying these routes of transmission provides information about how CFAV could be maintained in wild populations of mosquitoes and can aid future studies focusing on interactions of CFAV with their hosts and other viruses that infect mosquitoes.


Assuntos
Aedes , Arbovírus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Feminino , Flavivirus/genética , Humanos , Masculino , Mosquitos Vetores , Zika virus/genética
2.
Parasit Vectors ; 14(1): 327, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134775

RESUMO

BACKGROUND: Indoor residual spraying (IRS) of insecticides is a key method to reduce vector transmission of Trypanosoma cruzi, causing Chagas disease in a large part of South America. However, the successes of IRS in the Gran Chaco region straddling Bolivia, Argentina, and Paraguay, have not equalled those in other Southern Cone countries. AIMS: This study evaluated routine IRS practices and insecticide quality control in a typical endemic community in the Bolivian Chaco. METHODS: Alpha-cypermethrin active ingredient (a.i.) captured onto filter papers fitted to sprayed wall surfaces, and in prepared spray tank solutions, were measured using an adapted Insecticide Quantification Kit (IQK™) validated against HPLC quantification methods. The data were analysed by mixed-effects negative binomial regression models to examine the delivered insecticide a.i. concentrations on filter papers in relation to the sprayed wall heights, spray coverage rates (surface area / spray time [m2/min]), and observed/expected spray rate ratios. Variations between health workers and householders' compliance to empty houses for IRS delivery were also evaluated. Sedimentation rates of alpha-cypermethrin a.i. post-mixing of prepared spray tanks were quantified in the laboratory. RESULTS: Substantial variations were observed in the alpha-cypermethrin a.i. concentrations delivered; only 10.4% (50/480) of filter papers and 8.8% (5/57) of houses received the target concentration of 50 mg ± 20% a.i./m2. The delivered concentrations were not related to those in the matched spray tank solutions. The sedimentation of alpha-cypermethrin a.i. in the surface solution of prepared spray tanks was rapid post-mixing, resulting in a linear 3.3% loss of a.i. content per minute and 49% loss after 15 min. Only 7.5% (6/80) of houses were sprayed at the WHO recommended rate of 19 m2/min (± 10%), whereas 77.5% (62/80) were sprayed at a lower than expected rate. The median a.i. concentration delivered to houses was not significantly associated with the observed spray coverage rate. Householder compliance did not significantly influence either the spray coverage rates or the median alpha-cypermethrin a.i. concentrations delivered to houses. CONCLUSIONS: Suboptimal delivery of IRS is partially attributable to the insecticide physical characteristics and the need for revision of insecticide delivery methods, which includes training of IRS teams and community education to encourage compliance. The IQK™ is a necessary field-friendly tool to improve IRS quality and to facilitate health worker training and decision-making by Chagas disease vector control managers.


Assuntos
Doença de Chagas/transmissão , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Triatoma/efeitos dos fármacos , Animais , Bolívia , Doença de Chagas/parasitologia , Características da Família , Feminino , Humanos , Masculino , Controle de Mosquitos/instrumentação , Mosquitos Vetores/fisiologia , Piretrinas/farmacologia , Triatoma/fisiologia , Trypanosoma cruzi/fisiologia
3.
Sci Rep ; 10(1): 16232, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004954

RESUMO

Fenazaquin, pyridaben, tolfenpyrad and fenpyroximate are Complex I inhibitors offering a new mode of action for insecticidal malaria vector control. However, extended exposure to pyrethroid based products such as long-lasting insecticidal nets (LLINs) has created mosquito populations that are largely pyrethroid-resistant, often with elevated levels of P450s that can metabolise and neutralise diverse substrates. To assess cross-resistance liabilities of the Complex I inhibitors, we profiled their susceptibility to metabolism by P450s associated with pyrethroid resistance in Anopheles gambiae (CYPs 6M2, 6P3, 6P4, 6P5, 9J5, 9K1, 6Z2) and An. funestus (CYP6P9a). All compounds were highly susceptible. Transgenic An. gambiae overexpressing CYP6M2 or CYP6P3 showed reduced mortality when exposed to fenpyroximate and tolfenpyrad. Mortality from fenpyroximate was also reduced in pyrethroid-resistant strains of An. gambiae (VK7 2014 and Tiassalé 13) and An. funestus (FUMOZ-R). P450 inhibitor piperonyl butoxide (PBO) significantly enhanced the efficacy of fenpyroximate and tolfenpyrad, fully restoring mortality in fenpyroximate-exposed FUMOZ-R. Overall, results suggest that in vivo and in vitro assays are a useful guide in the development of new vector control products, and that the Complex I inhibitors tested are susceptible to metabolic cross-resistance and may lack efficacy in controlling pyrethroid resistant mosquitoes.


Assuntos
Anopheles/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Resistência a Inseticidas , Inseticidas/metabolismo , Piretrinas/metabolismo , Animais , Animais Geneticamente Modificados , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/metabolismo , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Feminino
4.
J Proteomics ; 198: 186-198, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30290233

RESUMO

While envenoming by the southern African shield-nosed or coral snakes (genus Aspidelaps) has caused fatalities, bites are uncommon. Consequently, this venom is not used in the mixture of snake venoms used to immunise horses for the manufacture of regional SAIMR (South African Institute for Medical Research) polyvalent antivenom. Aspidelaps species are even excluded from the manufacturer's list of venomous snakes that can be treated by this highly effective product. This leaves clinicians, albeit rarely, in a therapeutic vacuum when treating envenoming by these snakes. This is a significantly understudied small group of nocturnal snakes and little is known about their venom compositions and toxicities. Using a murine preclinical model, this study determined that the paralysing toxicity of venoms from Aspidelaps scutatus intermedius, A. lubricus cowlesi and A. l. lubricus approached that of venoms from highly neurotoxic African cobras and mambas. This finding was consistent with the cross-genus dominance of venom three-finger toxins, including numerous isoforms which showed extensive interspecific variation. Our comprehensive analysis of venom proteomes showed that the three Aspidelaps species possess highly similar venom proteomic compositions. We also revealed that the SAIMR polyvalent antivenom cross-reacted extensively in vitro with venom proteins of the three Aspidelaps. Importantly, this cross-genus venom-IgG binding translated to preclinical (in a murine model) neutralisation of A. s. intermedius venom-induced lethality by the SAIMR polyvalent antivenom, at doses comparable with those that neutralise venom from the cape cobra (Naja nivea), which the antivenom is directed against. Our results suggest a wider than anticipated clinical utility of the SAIMR polyvalent antivenom, and here we seek to inform southern African clinicians that this readily available antivenom is likely to prove effective for victims of Aspidelaps envenoming. BIOLOGICAL SIGNIFICANCE: Coral and shield-nosed snakes (genus Aspidelaps) comprise two species and several subspecies of potentially medically important venomous snakes distributed in Namibia, Botswana, Zimbabwe, Mozambique and South Africa. Documented human fatalities, although rare, have occurred from both A. lubricus and A. scutatus. However, their venom proteomes and the pathological effects of envenomings by this understudied group of nocturnal snakes remain uncharacterised. Furthermore, no commercial antivenom is made using venom from species of the genus Aspidelaps. To fill this gap, we have conducted a transcriptomics-guided comparative proteomics analysis of the venoms of the intermediate shield-nose snake (A. s. intermedius), southern coral snake (A. l. lubricus), and Cowle's shield snake (A. l. cowlesi); investigated the mechanism of action underpinning lethality by A. s. intermedius in the murine model; and assessed the in vitro immunoreactivity of the SAIMR polyvalent antivenom towards the venom toxins of A. l. lubricus and A. l. cowlesi, and the in vivo capability of this antivenom at neutralising the lethal effect of A. s. intermedius venom. Our data revealed a high degree of conservation of the global composition of the three Aspidelaps venom proteomes, all characterised by the overwhelming predominance of neurotoxic 3FTxs, which induced classical signs of systemic neurotoxicity in mice. The SAIMR polyvalent antivenom extensively binds to Aspidelaps venom toxins and neutralised, with a potency of 0.235 mg venom/mL antivenom, the lethal effect of A. s. intermedius venom. Our data suggest that the SAIMR antivenom could be a useful therapeutic tool for treating human envenomings by Aspidelaps species.


Assuntos
Antivenenos , Cobras Corais/metabolismo , Venenos Elapídicos , Proteínas de Répteis , Animais , Antivenenos/imunologia , Antivenenos/farmacologia , Venenos Elapídicos/química , Venenos Elapídicos/imunologia , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidade , Cavalos , Humanos , Imunização , Masculino , Camundongos , Proteínas de Répteis/química , Proteínas de Répteis/imunologia , Proteínas de Répteis/metabolismo , Proteínas de Répteis/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/metabolismo , África do Sul
6.
PLoS Negl Trop Dis ; 10(6): e0004615, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280729

RESUMO

BACKGROUND: Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications. METHODOLOGY/PRINCIPAL FINDINGS: Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C) for a range of durations (0-48 hours), followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity) to those found in the venom gland. CONCLUSIONS/SIGNIFICANCE: The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide more flexibility to performing fieldwork on venomous snakes in tropical conditions.


Assuntos
Elapidae/fisiologia , RNA Mensageiro/química , Venenos de Serpentes/química , Viperidae/fisiologia , Sequência de Aminoácidos , Animais , Guanidinas/química , Fenóis/química , RNA Mensageiro/genética , Manejo de Espécimes , Temperatura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA