Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655766

RESUMO

SUMMARY: Circadian oscillations of gene expression regulate daily physiological processes, and their disruption is linked to many diseases. Circadian rhythms can be disrupted in a variety of ways, including differential phase, amplitude and rhythm fitness. Although many differential circadian biomarker detection methods have been proposed, a workflow for systematic detection of multifaceted differential circadian characteristics with accurate false positive control is not currently available. We propose a comprehensive and interactive pipeline to capture the multifaceted characteristics of differentially rhythmic biomarkers. Analysis outputs are accompanied by informative visualization and interactive exploration. The workflow is demonstrated in multiple case studies and is extensible to general omics applications. AVAILABILITY AND IMPLEMENTATION: R package, Shiny app and source code are available in GitHub (https://github.com/DiffCircaPipeline) and Zenodo (https://doi.org/10.5281/zenodo.7507989). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Periodicidade , Software , Fluxo de Trabalho
2.
Nat Rev Neurosci ; 20(1): 49-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30459365

RESUMO

Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.


Assuntos
Encefalopatias/complicações , Ritmo Circadiano/fisiologia , Longevidade/fisiologia , Transtornos do Sono do Ritmo Circadiano/complicações , Sono/fisiologia , Animais , Encefalopatias/fisiopatologia , Humanos , Transtornos do Sono do Ritmo Circadiano/fisiopatologia
3.
Mol Psychiatry ; 28(11): 4777-4792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37674018

RESUMO

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.


Assuntos
Núcleo Accumbens , Transtornos Relacionados ao Uso de Opioides , Humanos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal Dorsolateral , Proteoma/metabolismo , Ritmo Circadiano , Transtornos Relacionados ao Uso de Opioides/metabolismo , Córtex Pré-Frontal/metabolismo
4.
J Fish Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757771

RESUMO

Despite being a heavily fished species, little is known about the movements of silky sharks (Carcharhinus falciformis). In this study, we report the longest (in duration and distance traveled) and most spatially extensive recorded migration for a silky shark. This shark, tagged with a fin-mount satellite transmitter at the Galapagos Islands, traveled >27,666 km over 546 days, making two westerly migrations into international waters as far as 4755 km from the tagging location. These extensive movements in an area with high international fishing effort highlights the importance of understanding silky shark migrations to inform management practices.

5.
J Proteome Res ; 22(7): 2377-2390, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37311105

RESUMO

Substance use disorders are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based quantitative proteomics, along with a data-independent acquisition analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveal cocaine and morphine differentially alter diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between the phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome. The proteomics data in this study are available via ProteomeXchange with identifier PXD042043.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Morfina/farmacologia , Morfina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia
6.
Proc Biol Sci ; 290(2012): 20232291, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052444

RESUMO

Niche partitioning among closely related, sympatric species is a fundamental concept in ecology, and its mechanisms are of broad interest for understanding ecosystem functioning and predicting the impacts of human-driven environmental change. However, identifying mechanisms by which top marine predators partition available resources has been especially challenging given the difficulty of quantifying resource use of large pelagic animals. In the eastern tropical Pacific (ETP), three large, highly mobile and ecologically similar pelagic predators (blue marlin (Makaira nigricans), black marlin (Istiompax indica) and sailfish (Istiophorus platypterus)) coexist in a vertically compressed habitat. To evaluate each species' ecological niche, we leveraged a decade of recreational fisheries data, multi-year satellite tracking with high-resolution dive data, and stable isotope analysis. Fishery interaction and telemetry-based three-dimensional seasonal utilization distributions suggested high spatial and temporal overlap among species; however, seasonal and diel variability in diving behaviour produced spatial partitioning, leading to low trophic overlap among species. Expanding oxygen minimum zones will reduce the available vertical habitat within predator guilds, likely leading to increases in interspecific competition. Thus, understanding the mechanisms of habitat partitioning among predators in the vertically compressed ETP can provide insight into how predators in other ocean regions may respond to vertically limited habitats.


Assuntos
Ecossistema , Perciformes , Animais , Humanos , Ecologia , Estado Nutricional
7.
Mol Psychiatry ; 27(9): 3583-3591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681081

RESUMO

Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.


Assuntos
Dopamina , Esquizofrenia , Humanos , Dopamina/fisiologia , Ácido Glutâmico , Transmissão Sináptica/fisiologia , Corpo Estriado
8.
J Anim Ecol ; 92(8): 1658-1671, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37283143

RESUMO

Pelagic predators must contend with low prey densities that are irregularly distributed and dynamic in space and time. Based on satellite imagery and telemetry data, many pelagic predators will concentrate horizontal movements on ephemeral surface fronts-gradients between water masses-because of enhanced local productivity and increased forage fish densities. Vertical fronts (e.g. thermoclines, oxyclines) can be spatially and temporally persistent, and aggregate lower trophic level and diel vertically migrating organisms due to sharp changes in temperature, water density or available oxygen. Thus, vertical fronts represent a stable and potentially energy rich habitat feature for diving pelagic predators but remain little explored in their capacity to enhance foraging opportunities. Here, we use a novel suite of high-resolution biologging data, including in situ derived oxygen saturation and video, to document how two top predators in the pelagic ecosystem exploit the vertical fronts created by the oxygen minimum zone of the eastern tropical Pacific. Prey search behaviour was dependent on dive shape, and significantly increased near the thermocline and hypoxic boundary for blue marlin Makaira nigricans and sailfish Istiophorus platypterus, respectively. Further, we identify a behaviour not yet reported for pelagic predators, whereby the predator repeatedly dives below the thermocline and hypoxic boundary (and by extension, below the prey). We hypothesize this behaviour is used to ambush prey concentrated at the boundaries from below. We describe how habitat fronts created by low oxygen environments can influence pelagic ecosystems, which will become increasingly important to understand in the context of global change and expanding oxygen minimum zones. We anticipate that our findings are shared among many pelagic predators where strong vertical fronts occur, and additional high-resolution tagging is warranted to confirm this.


Assuntos
Ecossistema , Oxigênio , Animais , Peixes , Comportamento Alimentar , Água , Comportamento Predatório
9.
J Fish Biol ; 103(5): 1226-1231, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455251

RESUMO

Juvenile white sharks (Carcharodon carcharias) typically aggregate along coastal beaches; however, high levels of recruitment and shifting oceanographic conditions may be causing habitat use expansions. Telemetry data indicate increased habitat use at the Northern Channel Islands (California, USA) by juvenile white shark that may be in response to increased population density at aggregation locations, or anomalous oceanographic events that impact habitat use or expand available habitat. Findings illustrate the need for long-term movement monitoring and understanding drivers of habitat use shifts and expansion to improve ecosystem management.


Assuntos
Ecossistema , Tubarões , Animais , Tubarões/fisiologia , Densidade Demográfica , Telemetria , Ilhas Anglo-Normandas
10.
J Neurosci ; 41(22): 4937-4947, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33893220

RESUMO

Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.


Assuntos
Neurônios Dopaminérgicos/patologia , Degeneração Neural/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Inseticidas/toxicidade , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Endogâmicos Lew , Rotenona/toxicidade
11.
J Neurosci ; 41(5): 1046-1058, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33268545

RESUMO

Substance use disorder (SUD) is associated with disruptions in circadian rhythms. The circadian transcription factor neuronal PAS domain protein 2 (NPAS2) is enriched in reward-related brain regions and regulates reward, but its role in SU is unclear. To examine the role of NPAS2 in drug taking, we measured intravenous cocaine self-administration (acquisition, dose-response, progressive ratio, extinction, cue-induced reinstatement) in wild-type (WT) and Npas2 mutant mice at different times of day. In the light (inactive) phase, cocaine self-administration, reinforcement, motivation and extinction responding were increased in all Npas2 mutants. Sex differences emerged during the dark (active) phase with Npas2 mutation increasing self-administration, extinction responding, and reinstatement only in females as well as reinforcement and motivation in males and females. To determine whether circulating hormones are driving these sex differences, we ovariectomized WT and Npas2 mutant females and confirmed that unlike sham controls, ovariectomized mutant mice showed no increase in self-administration. To identify whether striatal brain regions are activated in Npas2 mutant females, we measured cocaine-induced ΔFosB expression. Relative to WT, ΔFosB expression was increased in D1+ neurons in the nucleus accumbens (NAc) core and dorsolateral (DLS) striatum in Npas2 mutant females after dark phase self-administration. We also identified potential target genes that may underlie the behavioral responses to cocaine in Npas2 mutant females. These results suggest NPAS2 regulates reward and activity in specific striatal regions in a sex and time of day (TOD)-specific manner. Striatal activation could be augmented by circulating sex hormones, leading to an increased effect of Npas2 mutation in females.SIGNIFICANCE STATEMENT Circadian disruptions are a common symptom of substance use disorders (SUDs) and chronic exposure to drugs of abuse alters circadian rhythms, which may contribute to subsequent SU. Diurnal rhythms are commonly found in behavioral responses to drugs of abuse with drug sensitivity and motivation peaking during the dark (active) phase in nocturnal rodents. Emerging evidence links disrupted circadian genes to SU vulnerability and drug-induced alterations to these genes may augment drug-seeking. The circadian transcription factor neuronal PAS domain protein 2 (NPAS2) is enriched in reward-related brain regions and regulates reward, but its role in SU is unclear. To examine the role of NPAS2 in drug taking, we measured intravenous cocaine self-administration in wild-type (WT) and Npas2 mutant mice at different times of day.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/fisiologia , Cocaína/administração & dosagem , Mutação/genética , Proteínas do Tecido Nervoso/genética , Caracteres Sexuais , Administração Intravenosa , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Autoadministração
12.
Eur J Neurosci ; 55(3): 675-693, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35001440

RESUMO

Substance use disorders are associated with disruptions to both circadian rhythms and cellular metabolic state. At the molecular level, the circadian molecular clock and cellular metabolic state may be interconnected through interactions with the nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylase, sirtuin 1 (SIRT1). In the nucleus accumbens (NAc), a region important for reward, both SIRT1 and the circadian transcription factor neuronal PAS domain protein 2 (NPAS2) are highly enriched, and both are regulated by the metabolic cofactor NAD+ . Substances of abuse, like cocaine, greatly disrupt cellular metabolism and promote oxidative stress; however, their effects on NAD+ in the brain remain unclear. Interestingly, cocaine also induces NAc expression of both NPAS2 and SIRT1, and both have independently been shown to regulate cocaine reward in mice. However, whether NPAS2 and SIRT1 interact in the NAc and/or whether together they regulate reward is unknown. Here, we demonstrate diurnal expression of Npas2, Sirt1 and NAD+ in the NAc, which is altered by cocaine-induced upregulation. Additionally, co-immunoprecipitation reveals NPAS2 and SIRT1 interact in the NAc, and cross-analysis of NPAS2 and SIRT1 chromatin immunoprecipitation sequencing reveals several reward-relevant and metabolic-related pathways enriched among shared gene targets. Notably, NAc-specific Npas2 knock-down or a functional Npas2 mutation in mice attenuates SIRT1-mediated increases in cocaine preference. Together, our data reveal an interaction between NPAS2 and SIRT1 in the NAc, which may serve to integrate cocaine's effects on circadian and metabolic factors, leading to regulation of drug reward.


Assuntos
Cocaína , Núcleo Accumbens , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia , Ritmo Circadiano/fisiologia , Cocaína/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Recompensa , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo
13.
Mol Psychiatry ; 26(8): 4066-4084, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33235333

RESUMO

Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ácido Valproico , Animais , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mania , Camundongos , Ácido Valproico/farmacologia
14.
Psychol Med ; : 1-9, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729109

RESUMO

BACKGROUND: Sleep and circadian timing shifts later during adolescence, conflicting with early school start times, and resulting in circadian misalignment. Although circadian misalignment has been linked to depression, substance use, and altered reward function, a paucity of experimental studies precludes the determination of causality. Here we tested, for the first time, whether experimentally-imposed circadian misalignment alters the neural response to monetary reward and/or response inhibition. METHODS: Healthy adolescents (n = 25, ages 13-17) completed two in-lab sleep schedules in counterbalanced order: An 'aligned' condition based on typical summer sleep-wake times (0000-0930) and a 'misaligned' condition mimicking earlier school year sleep-wake times (2000-0530). Participants completed morning and afternoon functional magnetic resonance imaging scans during each condition, including monetary reward (morning only) and response inhibition (morning and afternoon) tasks. Total sleep time and circadian phase were assessed via actigraphy and salivary melatonin, respectively. RESULTS: Bilateral ventral striatal (VS) activation during reward outcome was lower during the Misaligned condition after accounting for the prior night's total sleep time. Bilateral VS activation during reward anticipation was lower during the Misaligned condition, including after accounting for covariates, but did not survive correction for multiple comparisons. Right inferior frontal gyrus activation during response inhibition was lower during the Misaligned condition, before and after accounting for total sleep time and vigilant attention, but only during the morning scan. CONCLUSIONS: Our findings provide novel experimental evidence that circadian misalignment analogous to that resulting from school schedules may have measurable impacts on healthy adolescents' reward processing and inhibition of prepotent responses.

15.
J Neurosci ; 39(24): 4657-4667, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30962277

RESUMO

The circadian transcription factor neuronal PAS domain 2 (NPAS2) is linked to psychiatric disorders associated with altered reward sensitivity. The expression of Npas2 is preferentially enriched in the mammalian forebrain, including the nucleus accumbens (NAc), a major neural substrate of motivated and reward behavior. Previously, we demonstrated that downregulation of NPAS2 in the NAc reduces the conditioned behavioral response to cocaine in mice. We also showed that Npas2 is preferentially enriched in dopamine receptor 1 containing medium spiny neurons (D1R-MSNs) of the striatum. To extend these studies, we investigated the impact of NPAS2 disruption on accumbal excitatory synaptic transmission and strength, along with the behavioral sensitivity to cocaine reward in a cell-type-specific manner. Viral-mediated knockdown of Npas2 in the NAc of male and female C57BL/6J mice increased the excitatory drive onto MSNs. Using Drd1a-tdTomato mice in combination with viral knockdown, we determined these synaptic adaptations were specific to D1R-MSNs relative to non-D1R-MSNs. Interestingly, NAc-specific knockdown of Npas2 blocked cocaine-induced enhancement of synaptic strength and glutamatergic transmission specifically onto D1R-MSNs. Last, we designed, validated, and used a novel Cre-inducible short-hairpin RNA virus for MSN-subtype-specific knockdown of Npas2 Cell-type-specific Npas2 knockdown in D1R-MSNs, but not D2R-MSNs, in the NAc reduced cocaine conditioned place preference. Together, our results demonstrate that NPAS2 regulates excitatory synapses of D1R-MSNs in the NAc and cocaine reward-related behavior.SIGNIFICANCE STATEMENT Drug addiction is a widespread public health concern often comorbid with other psychiatric disorders. Disruptions of the circadian clock can predispose or exacerbate substance abuse in vulnerable individuals. We demonstrate a role for the core circadian protein, NPAS2, in mediating glutamatergic neurotransmission at medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a region critical for reward processing. We find that NPAS2 negatively regulates functional excitatory synaptic plasticity in the NAc and is necessary for cocaine-induced plastic changes in MSNs expressing the dopamine 1 receptor (D1R). We further demonstrate disruption of NPAS2 in D1R-MSNs produces augmented cocaine preference. These findings highlight the significance of cell-type-specificity in mechanisms underlying reward regulation by NPAS2 and extend our knowledge of its function.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/farmacologia , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Núcleo Accumbens/citologia , Sinapses , Animais , Feminino , Ácido Glutâmico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Recompensa , Transmissão Sináptica/efeitos dos fármacos
16.
Mol Psychiatry ; 24(11): 1668-1684, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29728703

RESUMO

The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.


Assuntos
Ritmo Circadiano/fisiologia , Sirtuína 1/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Encéfalo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Cocaína/metabolismo , Condicionamento Operante/fisiologia , Condicionamento Psicológico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Oxirredução , Recompensa , Sirtuína 1/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia , Área Tegmentar Ventral/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(22): E4462-E4471, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28500272

RESUMO

The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.


Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lítio/farmacologia , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Química Encefálica , Cálcio/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteômica
18.
J Fish Biol ; 97(6): 1857-1860, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32914458

RESUMO

The giant sea bass Stereolepis gigas Ayres 1859 (GSB) is a critically endangered top marine predator in California. Since protection in 1982 and 1994, the population has appeared to increase, and individuals within a growing population may expand their ranges to new habitats to reduce intraspecific competition and increase foraging opportunities. In 2016-2018, two GSB tagged with acoustic transmitters were detected at artificial reefs for periods of up to 3 months during October-March, and one individual travelled 53 km from an offshore island to mainland California in 56 h. Artificial reefs may provide important foraging opportunities for these protected marine predators as they recover from exploitation.


Assuntos
Ecossistema , Perciformes/fisiologia , Acústica/instrumentação , Distribuição Animal , Animais , California , Oceano Pacífico , Comportamento Predatório/fisiologia , Tecnologia de Sensoriamento Remoto/instrumentação
19.
Proc Natl Acad Sci U S A ; 113(1): 206-11, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699485

RESUMO

With aging, significant changes in circadian rhythms occur, including a shift in phase toward a "morning" chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here, we used a previously described time-of-death analysis to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex [Brodmann's area 11 (BA11) and BA47]. Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ∼ 10% of detected transcripts (P < 0.05). Using a metaanalysis across the two brain areas, we identified a core set of 235 genes (q < 0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than 1,000 genes (1,186 in BA11; 1,591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time (to our knowledge) significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep, and mood in later life.


Assuntos
Envelhecimento/genética , Ritmo Circadiano/genética , Córtex Pré-Frontal/fisiopatologia , Transcrição Gênica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Regulação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Sono/genética , Adulto Jovem
20.
Alcohol Clin Exp Res ; 42(5): 879-888, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29668112

RESUMO

BACKGROUND: Chronic alcohol intake leads to long-lasting changes in reward- and stress-related neuronal circuitry. The nucleus accumbens (NAc) is an integral component of this circuitry. Here, we investigate the effects of DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) on neuronal activity in the NAc and binge-like drinking. METHODS: C57BL/6J mice were stereotaxically injected with AAV2 hSyn-HA hM3Dq, -hM4Di, or -eGFP bilaterally into NAc [core + shell, core or shell]. We measured clozapine-n-oxide (CNO)-induced changes in NAc activity and assessed binge-like ethanol (EtOH) or tastant/fluid intake in a limited access Drinking in the Dark (DID) schedule. RESULTS: We found that CNO increased NAc firing in hM3Dq positive cells and decreased firing in hM4Di cells, confirming the efficacy of these channels to alter neuronal activity both spatially and temporally. Increasing NAc core + shell activity decreased binge-like drinking without altering intake of other tastants. Increasing activity specifically in the NAc core reduced binge-like drinking, and decreasing activity in the NAc core increased drinking. Manipulation of NAc shell activity did not alter DID. Thus, we find that increasing activity in the entire NAc, or just the NAc core is sufficient to decrease binge drinking. CONCLUSIONS: We conclude that the reduction in EtOH drinking is not due to general malaise, altered perception of taste, or reduced calorie-seeking. Furthermore, we provide the first evidence for bidirectional control of NAc core and binge-like drinking. These findings could have promising implications for treatment.


Assuntos
Consumo de Bebidas Alcoólicas , Clozapina/análogos & derivados , Ingestão de Líquidos/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Potenciais de Ação/fisiologia , Adenoviridae , Animais , Clozapina/farmacologia , Feminino , Vetores Genéticos , Camundongos , Camundongos Transgênicos , Receptor Muscarínico M3/genética , Receptor Muscarínico M4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA