Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903247

RESUMO

Lanthanides are a series of critical elements widely used in multiple industries, such as optoelectronics and healthcare. Although initially considered to be of low toxicity, concerns have emerged during the last few decades over their impact on human health. The toxicological profile of these metals, however, has been incompletely characterized, with most studies to date solely focusing on one or two elements within the group. In the current study, we assessed potential toxicity mechanisms in the lanthanide series using a functional toxicogenomics approach in baker's yeast, which shares many cellular pathways and functions with humans. We screened the homozygous deletion pool of 4,291 Saccharomyces cerevisiae strains with the lanthanides and identified both common and unique functional effects of these metals. Three very different trends were observed within the lanthanide series, where deletions of certain proteins on membranes and organelles had no effect on the cellular response to early lanthanides while inducing yeast sensitivity and resistance to middle and late lanthanides, respectively. Vesicle-mediated transport (primarily endocytosis) was highlighted by both gene ontology and pathway enrichment analyses as one of the main functions disturbed by the majority of the metals. Protein-protein network analysis indicated that yeast response to lanthanides relied on proteins that participate in regulatory paths used for calcium (and other biologically relevant cations), and lanthanide toxicity included disruption of biosynthetic pathways by enzyme inhibition. Last, multiple genes and proteins identified in the network analysis have human orthologs, suggesting that those may also be targeted by lanthanides in humans.


Assuntos
Endocitose/efeitos dos fármacos , Elementos da Série dos Lantanídeos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Fenômenos Toxicológicos/genética , Vias Biossintéticas/efeitos dos fármacos , Genoma Fúngico/efeitos dos fármacos , Humanos , Elementos da Série dos Lantanídeos/farmacologia , Saccharomyces cerevisiae/genética , Toxicogenética/tendências
2.
Am J Hematol ; 95(9): 1085-1098, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32510613

RESUMO

Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes. Comprehensive elucidation of molecular pathways governing and regulating cellular iron acquisition and heme trafficking is required to better understand physiological and pathological processes affecting erythropoiesis. Here, we report the first genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens in human erythroid cells to identify determinants of iron and heme uptake, as well as heme-mediated erythroid differentiation. We identified several candidate modulators of TBI acquisition including TfR1, indicating that our approach effectively revealed players mechanistically relevant to the process. Interestingly, components of the endocytic pathway were also revealed as potential determinants of transferrin acquisition. We deciphered a role for the vacuolar-type H+ - ATPase (V- ATPase) assembly factor coiled-coil domain containing 115 (CCDC115) in TBI uptake and validated this role in CCDC115 deficient K562 cells. Our screen in hemin-treated cells revealed perturbations leading to cellular adaptation to heme, including those corresponding to trafficking mechanisms and transcription factors potentiating erythroid differentiation. Pathway analysis indicated that endocytosis and vesicle acidification are key processes for heme trafficking in erythroid precursors. Furthermore, we provided evidence that CCDC115, which we identified as required for TBI uptake, is also involved in cellular heme distribution. This work demonstrates a previously unappreciated common intersection in trafficking of transferrin iron and heme in the endocytic pathway of erythroid cells.


Assuntos
Células Eritroides/metabolismo , Heme/metabolismo , Ferro/metabolismo , Proteínas do Tecido Nervoso , Transporte Biológico Ativo , Sistemas CRISPR-Cas , Células Eritroides/citologia , Testes Genéticos , Células HEK293 , Heme/genética , Humanos , Células K562 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
Breast Cancer Res Treat ; 176(1): 131-140, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30993572

RESUMO

PURPOSE: Understanding how differentiation, microenvironment, and hormonal milieu influence human breast cell susceptibility to malignant transformation will require the use of physiologically relevant in vitro systems. We sought to develop a 3D culture model that enables the propagation of normal estrogen receptor alpha (ER) + cells. METHODS: We tested soluble factors and protocols for the ability to maintain progenitor and ER + cells in cultures established from primary cells. Optimized conditions were then used to profile estrogen-induced gene expression changes in cultures from three pathology-free individuals. RESULTS: Long-term representation of ER + cells was optimal in medium that included three different TGFß/activin receptor-like kinase inhibitors. We found that omitting the BMP signaling antagonist, Noggin, enhanced the responsiveness of the PGR gene to estradiol exposure without altering the proportions of ER + cells in the cultures. Profiling of estradiol-exposed cultures showed that while all the cultures showed immediate and robust induction of PGR, LRP2, and IGFB4, other responses varied qualitatively and quantitatively across specimens. CONCLUSIONS: We successfully identified conditions for the maintenance and propagation of functional ER + cells from normal human breast tissues. We propose that these 3D cultures will overcome limitations of conventional 2D cultures of partially or fully transformed cell lines by sustaining normal endocrine function and growth regulation of the cell populations that comprise intact breasts.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/metabolismo , Receptores de Estrogênio/genética , Esferoides Celulares , Ativação Transcricional , Células Tumorais Cultivadas
4.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G511-G523, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28798083

RESUMO

Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin (Hamp1) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels.NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males.


Assuntos
Hepcidinas/biossíntese , Ferro/metabolismo , RNA Mensageiro/biossíntese , Animais , Dieta , Feminino , Hepcidinas/genética , Ferro da Dieta/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Caracteres Sexuais , Especificidade da Espécie , Distribuição Tecidual , Transferrina/metabolismo
5.
PLoS Genet ; 8(6): e1002699, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685415

RESUMO

Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Zinco/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Genoma Fúngico , Homeostase/genética , Peroxissomos/genética , Peroxissomos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
6.
Environ Sci Technol ; 47(20): 11747-56, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23875995

RESUMO

Daphnia magna is a bioindicator organism accepted by several international water quality regulatory agencies. Current approaches for assessment of water quality rely on acute and chronic toxicity that provide no insight into the cause of toxicity. Recently, molecular approaches, such as genome wide gene expression responses, are enabling an alternative mechanism based approach to toxicity assessment. While these genomic methods are providing important mechanistic insight into toxicity, statistically robust prediction systems that allow the identification of chemical contaminants from the molecular response to exposure are needed. Here we apply advanced machine learning approaches to develop predictive models of contaminant exposure using a D. magna gene expression data set for 36 chemical exposures. We demonstrate here that we can discriminate between chemicals belonging to different chemical classes including endocrine disruptors and inorganic and organic chemicals based on gene expression. We also show that predictive models based on indices of whole pathway transcriptional activity can achieve comparable results while facilitating biological interpretability.


Assuntos
Daphnia/efeitos dos fármacos , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Testes de Toxicidade/métodos , Animais , Análise por Conglomerados , Daphnia/genética , Modelos Genéticos , Transcrição Gênica/efeitos dos fármacos
7.
Metallomics ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37336558

RESUMO

Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.


Assuntos
Elementos da Série dos Lantanídeos , Saccharomyces cerevisiae , Humanos , Elementos da Série dos Lantanídeos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Blood Adv ; 7(9): 1769-1783, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36111891

RESUMO

Etoposide is used to treat a wide range of malignant cancers, including acute myeloid leukemia (AML) in children. Despite the use of intensive chemotherapeutic regimens containing etoposide, a significant proportion of pediatric patients with AML become resistant to treatment and relapse, leading to poor survival. This poses a pressing clinical challenge to identify mechanisms underlying drug resistance to enable effective pharmacologic targeting. We performed a genome-wide CRISPR/Cas9 synthetic-lethal screening to identify functional modulators of etoposide response in leukemic cell line and integrated results from CRISPR-screen with gene expression and clinical outcomes in pediatric patients with AML treated with etoposide-containing regimen. Our results confirmed the involvement of well-characterized genes, including TOP2A and ABCC1, as well as identified novel genes such as RAD54L2, PRKDC, and ZNF451 that have potential to be novel drug targets. This study demonstrates the ability for leveraging CRISPR/Cas9 screening in conjunction with clinically relevant endpoints to make meaningful discoveries for the identification of prognostic biomarkers and novel therapeutic targets to overcome treatment resistance.


Assuntos
Sistemas CRISPR-Cas , Leucemia Mieloide Aguda , Humanos , Criança , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linhagem Celular , DNA Helicases/genética
9.
Mol Omics ; 18(3): 237-248, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35040455

RESUMO

Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.


Assuntos
Meios de Contraste , Gadolínio , Meios de Contraste/toxicidade , Gadolínio/toxicidade , Homozigoto , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Saccharomyces cerevisiae/genética , Deleção de Sequência , Toxicogenética
10.
ACS Omega ; 7(38): 34412-34419, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188298

RESUMO

Lanthanides are a series of elements essential to a wide range of applications, from clean energy production to healthcare. Despite their presence in multiple products and technologies, their toxicological characteristics have been only partly studied. Recently, our group has employed a genomic approach to extensively characterize the toxicity mechanisms of lanthanides. Even though we identified substantially different behaviors for mid and late lanthanides, the toxicological profiles of early lanthanides remained elusive. Here, we overcome this gap by describing a multidimensional genome-wide toxicogenomic study for two early lanthanides, namely, lanthanum and praseodymium. We used Saccharomyces cerevisiae as a model system since its genome shares many biological pathways with humans. By performing functional analysis and protein-protein interaction network analysis, we identified the main genes and proteins that participate in the yeast response to counter metal harmful effects. Moreover, our analysis also highlighted key enzymes that are dysregulated by early lanthanides, inducing cytotoxicity. Several of these genes and proteins have human orthologues, indicating that they may also participate in the human response against the metals. By highlighting the key genes and proteins in lanthanide-induced toxicity, this work may contribute to the development of new prophylactic and therapeutic strategies against lanthanide harmful exposures.

11.
Metallomics ; 13(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34694395

RESUMO

Europium is a lanthanide metal that is highly valued in optoelectronics. Even though europium is used in many commercial products, its toxicological profile has only been partially characterized, with most studies focusing on identifying lethal doses in different systems or bioaccumulation in vivo. This paper describes a genome-wide toxicogenomic study of europium in Saccharomyces cerevisiae, which shares many biological functions with humans. By using a multidimensional approach and functional and network analyses, we have identified a group of genes and proteins associated with the yeast responses to ameliorate metal toxicity, which include metal discharge paths through vesicle-mediated transport, paths to regulate biologically relevant cations, and processes to reduce metal-induced stress. Furthermore, the analyses indicated that europium promotes yeast toxicity by disrupting the function of chaperones and cochaperones, which have metal-binding sites. Several of the genes and proteins highlighted in our study have human orthologues, suggesting they may participate in europium-induced toxicity in humans. By identifying the endogenous targets of europium as well as the already existing paths that can decrease its toxicity, we can determine specific genes and proteins that may help to develop future therapeutic strategies.


Assuntos
Európio/toxicidade , Genoma Fúngico , Saccharomyces cerevisiae/efeitos dos fármacos , Európio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Toxicogenética
12.
Toxicol Sci ; 182(2): 260-274, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34051100

RESUMO

Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2. Interestingly, treatment of N27 cells with dieldrin markedly downregulated the expression of many of these genes. Dieldrin exterted a similar effect in inhibiting IFIT2 and MX1 gene expression in human SH-SY5Y neuronal cells induced by an RNA viral mimic, polyinosinic: polycytidylic acid (poly I:C) and IFIT2/3 gene expression in human pulmonary epithelial cells exposed to human influenza H1N1 virus. Mechanistically, dieldrin induced a rapid rise in levels of intracellular reactive oxygen species (iROS) and a decrease in intracellular glutathione (GSH) levels in SH-SY5Y cells. Treatment with N-acetylcysteine, an antioxidant and GSH biosynthesis precursor, effectively blocked both dieldrin-induced increases in iROS and its inhibition of poly I:C-induced upregulation of IFIT and MX gene expression, suggesting a role for intracellular oxidative status in dieldrin's modulation of antiviral gene expression. This study demonstrates that dieldrin modulates key genes of the cellular innate immune responses that are normally involved in the host's cellular defense against viral infections. Our findings have potential relevance to understanding the organismal effects of environmentally persistent organochlorine contaminants on the mammalian cellular immune system.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Praguicidas , Animais , Antivirais , Dieldrin/toxicidade , Neurônios Dopaminérgicos , Expressão Gênica , Humanos , Interferons , Praguicidas/toxicidade , Ratos
13.
Artigo em Inglês | MEDLINE | ID: mdl-33684654

RESUMO

To evaluate the impact of environmental contaminants on aquatic health, extensive surveys of fish populations have been conducted using bioaccumulation as an indicator of impairment. While these studies have reported mixtures of chemicals in fish tissues, the relationship between specific contaminants and observed adverse impacts remains poorly understood. The present study aimed to characterize the toxicological responses induced by persistent organic pollutants in wild-caught hornyhead turbot (P. verticalis). To do so, hornyhead turbot were interperitoneally injected with a single dose of PCB or PBDE congeners prepared using environmentally realistic mixture proportions. After 96-hour exposure, the livers were excised and analyzed using transcriptomic approaches and analytical chemistry. Concentrations of PCBs and PBDEs measured in the livers indicated clear differences across treatments, and congener profiles closely mirrored our expectations. Distinct gene profiles were characterized for PCB and PBDE exposed fish, with significant differences observed in the expression of genes associated with immune responses, endocrine-related functions, and lipid metabolism. Our findings highlight the key role that transcriptomics can play in monitoring programs to assess chemical-induced toxicity in heterogeneous group of fish (mixed gender and life stage) as is typically found during field surveys. Altogether, the present study provides further evidence of the potential of transcriptomic tools to improve aquatic health assessment and identify causative agents.


Assuntos
Linguado/genética , Éteres Difenil Halogenados/toxicidade , Bifenilos Policlorados/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Proteínas de Peixes/genética
14.
Chemosphere ; 269: 128701, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33189395

RESUMO

Formaldehyde (FA), a ubiquitous environmental pollutant, is classified as a Group I human carcinogen by the International Agency for Research on Cancer. Previously, we reported that FA induced hematotoxicity and chromosomal aneuploidy in exposed workers and toxicity in bone marrow and hematopoietic stem cells of experimental animals. Using functional toxicogenomic profiling in yeast, we identified genes and cellular processes modulating eukaryotic FA cytotoxicity. Although we validated some of these findings in yeast, many specific genes, pathways and mechanisms of action of FA in human cells are not known. In the current study, we applied genome-wide, loss-of-function CRISPR screening to identify modulators of FA toxicity in the human hematopoietic K562 cell line. We assessed the cellular genetic determinants of susceptibility and resistance to FA at 40, 100 and 150 µM (IC10, IC20 and IC60, respectively) at two time points, day 8 and day 20. We identified multiple candidate genes that increase sensitivity (e.g. ADH5, ESD and FANC family) or resistance (e.g. FASN and KDM6A) to FA when disrupted. Pathway analysis revealed a major role for the FA metabolism and Fanconi anemia pathway in FA tolerance, consistent with findings from previous studies. Additional network analyses revealed potential new roles for one-carbon metabolism, fatty acid synthesis and mTOR signaling in modulating FA toxicity. Validation of these novel findings will further enhance our understanding of FA toxicity in human cells. Our findings support the utility of CRISPR-based functional genomics screening of environmental chemicals.


Assuntos
Anemia de Fanconi , Hipersensibilidade Respiratória , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Anemia de Fanconi/genética , Formaldeído/efeitos adversos , Formaldeído/toxicidade , Humanos
15.
Cancer Res ; 81(17): 4581-4593, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34158378

RESUMO

The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology. We combined proteome-wide affinity-purification of nelfinavir-interacting proteins with genome-wide CRISPR/Cas9-based screening to identify protein partners that interact with nelfinavir in an activity-dependent manner alongside candidate genetic contributors affecting nelfinavir cytotoxicity. Nelfinavir had multiple activity-specific binding partners embedded in lipid bilayers of mitochondria and the endoplasmic reticulum. Nelfinavir affected the fluidity and composition of lipid-rich membranes, disrupted mitochondrial respiration, blocked vesicular transport, and affected the function of membrane-embedded drug efflux transporter ABCB1, triggering the integrated stress response. Sensitivity to nelfinavir was dependent on ADIPOR2, which maintains membrane fluidity by promoting fatty acid desaturation and incorporation into phospholipids. Supplementation with fatty acids prevented the nelfinavir-induced effect on mitochondrial metabolism, drug-efflux transporters, and stress-response activation. Conversely, depletion of fatty acids/cholesterol pools by the FDA-approved drug ezetimibe showed a synergistic anticancer activity with nelfinavir in vitro. These results identify the modification of lipid-rich membranes by nelfinavir as a novel mechanism of action to achieve broad anticancer activity, which may be suitable for the treatment of PI-refractory multiple myeloma. SIGNIFICANCE: Nelfinavir induces lipid bilayer stress in cellular organelles that disrupts mitochondrial respiration and transmembrane protein transport, resulting in broad anticancer activity via metabolic rewiring and activation of the unfolded protein response.


Assuntos
Inibidores da Protease de HIV/farmacologia , Lipídeos de Membrana , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Nelfinavir/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Genoma , Glucose/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Lipidômica , Lipídeos/química , Fosfolipídeos/química , Fosforilação , Receptores de Adiponectina/metabolismo , Transdução de Sinais
16.
Toxicol Sci ; 176(2): 366-381, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421776

RESUMO

Organochlorine pesticides, once widely used, are extremely persistent and bio-accumulative in the environment. Epidemiological studies have implicated that environmental exposure to organochlorine pesticides including dieldrin is a risk factor for the development of Parkinson's disease. However, the pertinent mechanisms of action remain poorly understood. In this study, we carried out a genome-wide (Brunello library, 19 114 genes, 76 411 sgRNAs) CRISPR/Cas9 screen in human dopaminergic SH-SY5Y neuronal cells exposed to a chronic treatment (30 days) with dieldrin to identify cellular pathways that are functionally related to the chronic cellular toxicity. Our results indicate that dieldrin toxicity was enhanced by gene disruption of specific components of the ubiquitin proteasome system as well as, surprisingly, the protein degradation pathways previously implicated in inherited forms of Parkinson's disease, centered on Parkin. In addition, disruption of regulatory components of the mTOR pathway which integrates cellular responses to both intra- and extracellular signals and is a central regulator for cell metabolism, growth, proliferation, and survival, led to increased sensitivity to dieldrin-induced cellular toxicity. This study is one of the first to apply a genome-wide CRISPR/Cas9-based functional gene disruption screening approach in an adherent neuronal cell line to globally decipher cellular mechanisms that contribute to environmental toxicant-induced neurotoxicity and provides novel insight into the dopaminergic neurotoxicity associated with chronic exposure to dieldrin.


Assuntos
Sistemas CRISPR-Cas , Dieldrin , Neurônios Dopaminérgicos/efeitos dos fármacos , Praguicidas , Linhagem Celular , Dieldrin/toxicidade , Humanos , Praguicidas/toxicidade
17.
BMC Genomics ; 10: 130, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19321002

RESUMO

BACKGROUND: Iron-deficiency anemia is the most prevalent form of anemia world-wide. The yeast Saccharomyces cerevisiae has been used as a model of cellular iron deficiency, in part because many of its cellular pathways are conserved. To better understand how cells respond to changes in iron availability, we profiled the yeast genome with a parallel analysis of homozygous deletion mutants to identify essential components and cellular processes required for optimal growth under iron-limited conditions. To complement this analysis, we compared those genes identified as important for fitness to those that were differentially-expressed in the same conditions. The resulting analysis provides a global perspective on the cellular processes involved in iron metabolism. RESULTS: Using functional profiling, we identified several genes known to be involved in high affinity iron uptake, in addition to novel genes that may play a role in iron metabolism. Our results provide support for the primary involvement in iron homeostasis of vacuolar and endosomal compartments, as well as vesicular transport to and from these compartments. We also observed an unexpected importance of the peroxisome for growth in iron-limited media. Although these components were essential for growth in low-iron conditions, most of them were not differentially-expressed. Genes with altered expression in iron deficiency were mainly associated with iron uptake and transport mechanisms, with little overlap with those that were functionally required. To better understand this relationship, we used expression-profiling of selected mutants that exhibited slow growth in iron-deficient conditions, and as a result, obtained additional insight into the roles of CTI6, DAP1, MRS4 and YHR045W in iron metabolism. CONCLUSION: Comparison between functional and gene expression data in iron deficiency highlighted the complementary utility of these two approaches to identify important functional components. This should be taken into consideration when designing and analyzing data from these type of studies. We used this and other published data to develop a molecular interaction network of iron metabolism in yeast.


Assuntos
Genoma Fúngico , Ferro/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Análise por Conglomerados , DNA Fúngico/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Toxicol Sci ; 169(1): 235-245, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059574

RESUMO

Acetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde. Disruption of genes encoding components of various DNA repair pathways increased cellular sensitivity to acetaldehyde. Unexpectedly, the tumor suppressor gene OVCA2, whose function is unknown, was identified in our screen as a determinant of acetaldehyde tolerance. Disruption of the OVCA2 gene resulted in increased acetaldehyde sensitivity and higher accumulation of the acetaldehyde-derived DNA adduct N2-ethylidene-dG. Together these results are consistent with a role for OVCA2 in adduct removal and/or DNA repair.


Assuntos
Acetaldeído/toxicidade , Sistemas CRISPR-Cas , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Neoplasias/induzido quimicamente , Neoplasias/genética , Proteínas/genética , Proteínas Supressoras de Tumor/genética , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Adutos de DNA/genética , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Células K562 , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas/metabolismo , Medição de Risco , Proteínas Supressoras de Tumor/metabolismo
19.
Toxicol Sci ; 169(1): 108-121, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30815697

RESUMO

Arsenic exposure is a worldwide health concern associated with an increased risk of skin, lung, and bladder cancer but arsenic trioxide (AsIII) is also an effective chemotherapeutic agent. The current use of AsIII in chemotherapy is limited to acute promyelocytic leukemia (APL). However, AsIII was suggested as a potential therapy for other cancer types including chronic myeloid leukemia (CML), especially when combined with other drugs. Here, we carried out a genome-wide CRISPR-based approach to identify modulators of AsIII toxicity in K562, a human CML cell line. We found that disruption of KEAP1, the inhibitory partner of the key antioxidant transcription factor Nrf2, or TXNDC17, a thioredoxin-like protein, markedly increased AsIII tolerance. Loss of the water channel AQP3, the zinc transporter ZNT1 and its regulator MTF1 also enhanced tolerance to AsIII whereas loss of the multidrug resistance protein ABCC1 increased sensitivity to AsIII. Remarkably, disruption of any of multiple genes, EEFSEC, SECISBP2, SEPHS2, SEPSECS, and PSTK, encoding proteins involved in selenocysteine metabolism increased resistance to AsIII. Our data suggest a model in which an intracellular interaction between selenium and AsIII may impact intracellular AsIII levels and toxicity. Together this work revealed a suite of cellular components/processes which modulate the toxicity of AsIII in CML cells. Targeting such processes simultaneously with AsIII treatment could potentiate AsIII in CML therapy.


Assuntos
Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Perfilação da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Sistemas CRISPR-Cas , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Edição de Genes , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Transdução de Sinais , Selenito de Sódio/farmacologia , Fatores de Tempo , Transcriptoma
20.
Toxicol Sci ; 101(1): 140-51, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17785683

RESUMO

Iron and copper are essential nutrients for life as they are required for the function of many proteins but can be toxic if present in excess. Accumulation of these metals in the human body as a consequence of overload disorders and/or high environmental exposures has detrimental effects on health. The budding yeast Saccharomyces cerevisiae is an accepted cellular model for iron and copper metabolism in humans primarily because of the high degree of conservation between pathways and proteins involved. Here we report a systematic screen using yeast deletion mutants to identify genes involved in the toxic response to growth-inhibitory concentrations of iron and copper sulfate. We aimed to understand the cellular responses to toxic concentrations of these two metals by analyzing the different subnetworks and biological processes significantly enriched with these genes. Our results indicate the presence of two different detoxification pathways for iron and copper that converge toward the vacuole. The product of several of the identified genes in these pathways form molecular complexes that are conserved in mammals and include the retromer, endosomal sorting complex required for transport (ESCRT) and AP-3 complexes, suggesting that the mechanisms involved can be extrapolated to humans. Our data also suggest a disruption in ion homeostasis and, in particular, of iron after copper exposure. Moreover, the identification of treatment-specific genes associated with biological processes such as DNA double-strand break repair for iron and tryptophan biosynthesis for copper suggests differences in the mechanisms by which these two metals are toxic at high concentrations.


Assuntos
Cobre/toxicidade , Sobrecarga de Ferro/genética , Mutação/fisiologia , Saccharomyces cerevisiae/genética , Reparo do DNA/efeitos dos fármacos , DNA Fúngico/biossíntese , DNA Fúngico/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/efeitos dos fármacos , Genoma Fúngico , Redes Neurais de Computação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA