Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(18): e2117310119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486701

RESUMO

ß-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine ß-lactamase (SBL)-catalyzed hydrolysis. The scope of ß-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e., the penam sulfones tazobactam and sulbactam, which are mechanism-based inhibitors working by acylation of the nucleophilic serine. The new SBLi enmetazobactam, an N-methylated tazobactam derivative, has recently completed clinical trials. Biophysical studies on the mechanism of SBL inhibition by enmetazobactam reveal that it inhibits representatives of all SBL classes without undergoing substantial scaffold fragmentation, a finding that contrasts with previous reports on SBL inhibition by tazobactam and sulbactam. We therefore reinvestigated the mechanisms of tazobactam and sulbactam using mass spectrometry under denaturing and nondenaturing conditions, X-ray crystallography, and NMR spectroscopy. The results imply that the reported extensive fragmentation of penam sulfone­derived acyl­enzyme complexes does not substantially contribute to SBL inhibition. In addition to observation of previously identified inhibitor-induced SBL modifications, the results reveal that prolonged reaction of penam sulfones with SBLs can induce dehydration of the nucleophilic serine to give a dehydroalanine residue that undergoes reaction to give a previously unobserved lysinoalanine cross-link. The results clarify the mechanisms of action of widely clinically used SBLi, reveal limitations on the interpretation of mass spectrometry studies concerning mechanisms of SBLi, and will inform the development of new SBLi working by reaction to form hydrolytically stable acyl­enzyme complexes.


Assuntos
Compostos Azabicíclicos , Inibidores de beta-Lactamases , Penicilinas , Sulfonas , Triazóis , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química
2.
J Biol Chem ; 295(49): 16604-16613, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32963107

RESUMO

An important mechanism of resistance to ß-lactam antibiotics is via their ß-lactamase-catalyzed hydrolysis. Recent work has shown that, in addition to the established hydrolysis products, the reaction of the class D nucleophilic serine ß-lactamases (SBLs) with carbapenems also produces ß-lactones. We report studies on the factors determining ß-lactone formation by class D SBLs. We show that variations in hydrophobic residues at the active site of class D SBLs (i.e. Trp105, Val120, and Leu158, using OXA-48 numbering) impact on the relative levels of ß-lactones and hydrolysis products formed. Some variants, i.e. the OXA-48 V120L and OXA-23 V128L variants, catalyze increased ß-lactone formation compared with the WT enzymes. The results of kinetic and product studies reveal that variations of residues other than those directly involved in catalysis, including those arising from clinically observed mutations, can alter the reaction outcome of class D SBL catalysis. NMR studies show that some class D SBL variants catalyze formation of ß-lactones from all clinically relevant carbapenems regardless of the presence or absence of a 1ß-methyl substituent. Analysis of reported crystal structures for carbapenem-derived acyl-enzyme complexes reveals preferred conformations for hydrolysis and ß-lactone formation. The observation of increased ß-lactone formation by class D SBL variants, including the clinically observed carbapenemase OXA-48 V120L, supports the proposal that class D SBL-catalyzed rearrangement of ß-lactams to ß-lactones is important as a resistance mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Lactonas/metabolismo , beta-Lactamases/metabolismo , Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Resistência Microbiana a Medicamentos , Hidrólise , Cinética , Lactonas/química , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , beta-Lactamases/química , beta-Lactamases/genética
3.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32934009

RESUMO

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Assuntos
Dictyostelium/enzimologia , Prolil Hidroxilases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cinética , Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Prolil Hidroxilases/química , Prolil Hidroxilases/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
4.
J Biol Chem ; 294(37): 13629-13637, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31320474

RESUMO

The Mag1 and Tpa1 proteins from budding yeast (Saccharomyces cerevisiae) have both been reported to repair alkylation damage in DNA. Mag1 initiates the base excision repair pathway by removing alkylated bases from DNA, and Tpa1 has been proposed to directly repair alkylated bases as does the prototypical oxidative dealkylase AlkB from Escherichia coli However, we found that in vivo repair of methyl methanesulfonate (MMS)-induced alkylation damage in DNA involves Mag1 but not Tpa1. We observed that yeast strains without tpa1 are no more sensitive to MMS than WT yeast, whereas mag1-deficient yeast are ∼500-fold more sensitive to MMS. We therefore investigated the substrate specificity of Mag1 and found that it excises alkylated bases that are known AlkB substrates. In contrast, purified recombinant Tpa1 did not repair these alkylated DNA substrates, but it did exhibit the prolyl hydroxylase activity that has also been ascribed to it. A comparison of several of the kinetic parameters of Mag1 and its E. coli homolog AlkA revealed that Mag1 catalyzes base excision from known AlkB substrates with greater efficiency than does AlkA, consistent with an expanded role of yeast Mag1 in repair of alkylation damage. Our results challenge the proposal that Tpa1 directly functions in DNA repair and suggest that Mag1-initiated base excision repair compensates for the absence of oxidative dealkylation of alkylated nucleobases in budding yeast. This expanded role of Mag1, as compared with alkylation repair glycosylases in other organisms, could explain the extreme sensitivity of Mag1-deficient S. cerevisiae toward alkylation damage.


Assuntos
Proteínas de Transporte/metabolismo , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alquilantes , Alquilação/genética , Proteínas de Transporte/genética , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/genética , DNA Fúngico/metabolismo , Remoção de Radical Alquila/genética , Endodesoxirribonucleases/genética , Escherichia coli/metabolismo , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Mutação , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Especificidade por Substrato
5.
Chembiochem ; 21(3): 368-372, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31322798

RESUMO

Mycobacterium tuberculosis l,d-transpeptidases (Ldts), which are involved in cell-wall biosynthesis, have emerged as promising targets for the treatment of tuberculosis. However, an efficient method for testing inhibition of these enzymes is not currently available. We present a fluorescence-based assay for LdtMt2 , which is suitable for high-throughput screening. Two fluorogenic probes were identified that release a fluorophore upon reaction with LdtMt2 , thus making it possible to assess the availability of the catalytic site in the presence of inhibitors. The assay was applied to a panel of ß-lactam antibiotics and related inhibitors; the results validate observations that the (carba)penem subclass of ß-lactams are more potent Ldt inhibitors than other ß-lactam classes, though unexpected variations in potency were observed. The method will enable systematic structure-activity relationship studies on Ldts, thereby facilitating the identification of new antibiotics active against M. tuberculosis.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , beta-Lactamas/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/química , Fluorescência , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamas/química
6.
Proc Natl Acad Sci U S A ; 114(18): 4667-4672, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420789

RESUMO

Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the four-electron oxidation of 2-oxoglutarate to give ethylene in an arginine-dependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of l-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.


Assuntos
Proteínas de Bactérias/química , Etilenos/química , Ácidos Cetoglutáricos/química , Liases/química , Modelos Químicos , Pseudomonas syringae/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Etilenos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Liases/metabolismo
7.
Chemistry ; 25(51): 11837-11841, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31310409

RESUMO

Bacterial production of ß-lactamases with carbapenemase activity is a global health threat. The active sites of class D carbapenemases such as OXA-48, which is of major clinical importance, uniquely contain a carbamylated lysine residue which is essential for catalysis. Although there is significant interest in characterizing this post-translational modification, and it is a promising inhibition target, protein carbamylation is challenging to monitor in solution. We report the use of 19 F NMR spectroscopy to monitor the carbamylation state of 19 F-labelled OXA-48. This method was used to investigate the interactions of OXA-48 with clinically used serine ß-lactamase inhibitors, including avibactam and vaborbactam. Crystallographic studies on 19 F-labelled OXA-48 provide a structural rationale for the sensitivity of the 19 F label to active site interactions. The overall results demonstrate the use of 19 F NMR to monitor reversible covalent post-translational modifications.


Assuntos
Compostos Azabicíclicos/química , Proteínas de Bactérias/química , Radioisótopos de Flúor/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/farmacologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Carbamilação de Proteínas , Processamento de Proteína Pós-Traducional , Inibidores de beta-Lactamases/química , beta-Lactamases/química , beta-Lactamases/metabolismo
8.
Chemistry ; 25(8): 2019-2024, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30427558

RESUMO

Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.


Assuntos
Prolil Hidroxilases , Inibidores de Prolil-Hidrolase , Ribossomos/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Desenho de Fármacos , Humanos , Proteínas Nucleares/antagonistas & inibidores , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/química , Inibidores de Prolil-Hidrolase/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Ribossomos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Bioorg Med Chem ; 27(12): 2405-2412, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737136

RESUMO

The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/química , Inibidores de Prolil-Hidrolase/química , Ensaios Enzimáticos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Ácidos Cetoglutáricos/química , Oligopeptídeos/química , Phycodnaviridae/enzimologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Angew Chem Int Ed Engl ; 58(7): 1990-1994, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30569575

RESUMO

Enzymes often use nucleophilic serine, threonine, and cysteine residues to achieve the same type of reaction; the underlying reasons for this are not understood. While bacterial d,d-transpeptidases (penicillin-binding proteins) employ a nucleophilic serine, l,d-transpeptidases use a nucleophilic cysteine. The covalent complexes formed by l,d-transpeptidases with some ß-lactam antibiotics undergo non-hydrolytic fragmentation. This is not usually observed for penicillin-binding proteins, or for the related serine ß-lactamases. Replacement of the nucleophilic serine of serine ß-lactamases with cysteine yields enzymes which fragment ß-lactams via a similar mechanism as the l,d-transpeptidases, implying the different reaction outcomes are principally due to the formation of thioester versus ester intermediates. The results highlight fundamental differences in the reactivity of nucleophilic serine and cysteine enzymes, and imply new possibilities for the inhibition of nucleophilic enzymes.


Assuntos
Antibacterianos/metabolismo , Cisteína/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Antibacterianos/química , Cisteína/química , Conformação Molecular , Peptidil Transferases/química , beta-Lactamases/química , beta-Lactamas/química
11.
Nat Prod Rep ; 35(8): 735-756, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29808887

RESUMO

Covering: up to 2017 2-Oxoglutarate (2OG) dependent oxygenases and the homologous oxidase isopenicillin N synthase (IPNS) play crucial roles in the biosynthesis of ß-lactam ring containing natural products. IPNS catalyses formation of the bicyclic penicillin nucleus from a tripeptide. 2OG oxygenases catalyse reactions that diversify the chemistry of ß-lactams formed by both IPNS and non-oxidative enzymes. Reactions catalysed by the 2OG oxygenases of ß-lactam biosynthesis not only involve their typical hydroxylation reactions, but also desaturation, epimerisation, rearrangement, and ring-forming reactions. Some of the enzymes involved in ß-lactam biosynthesis exhibit remarkable substrate and product selectivities. We review the roles of 2OG oxygenases and IPNS in ß-lactam biosynthesis, highlighting opportunities for application of knowledge of their roles, structures, and mechanisms.


Assuntos
Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , beta-Lactamas/metabolismo , Carbapenêmicos/biossíntese , Cefalosporinas/biossíntese , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/química , Oxigenases/metabolismo , beta-Lactamas/química
12.
Mol Microbiol ; 106(3): 492-504, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28876489

RESUMO

Clavulanic acid and avibactam are clinically deployed serine ß-lactamase inhibitors, important as a defence against antibacterial resistance. Bicyclic boronates are recently discovered inhibitors of serine and some metallo ß-lactamases. Here, we show that avibactam and a bicyclic boronate inhibit L2 (serine ß-lactamase) but not L1 (metallo ß-lactamase) from the extensively drug resistant human pathogen Stenotrophomonas maltophilia. X-ray crystallography revealed that both inhibitors bind L2 by covalent attachment to the nucleophilic serine. Both inhibitors reverse ceftazidime resistance in S. maltophilia because, unlike clavulanic acid, they do not induce L1 production. Ceftazidime/inhibitor resistant mutants hyperproduce L1, but retain aztreonam/inhibitor susceptibility because aztreonam is not an L1 substrate. Importantly, avibactam, but not the bicyclic boronate is deactivated by L1 at a low rate; the utility of avibactam might be compromised by mutations that increase this deactivation rate. These data rationalize the observed clinical efficacy of ceftazidime/avibactam plus aztreonam as combination therapy for S. maltophilia infections and confirm that aztreonam-like ß-lactams plus nonclassical ß-lactamase inhibitors, particularly avibactam-like and bicyclic boronate compounds, have potential for treating infections caused by this most intractable of drug resistant pathogens.


Assuntos
Stenotrophomonas maltophilia/metabolismo , Inibidores de beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Compostos Azabicíclicos/metabolismo , Compostos Azabicíclicos/farmacologia , Aztreonam , Proteínas de Bactérias/metabolismo , Ceftazidima , Cristalografia por Raios X/métodos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
13.
Angew Chem Int Ed Engl ; 57(5): 1282-1285, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29236332

RESUMO

ß-Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl-enzyme intermediate. We show that class D ß-lactamases also degrade clinically used 1ß-methyl-substituted carbapenems through the unprecedented formation of a carbapenem-derived ß-lactone. ß-Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl-enzyme intermediate. The carbapenem-derived lactone products inhibit both serine ß-lactamases (particularly class D) and metallo-ß-lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required.

14.
Artigo em Inglês | MEDLINE | ID: mdl-28115348

RESUMO

ß-Lactamase-mediated resistance is a growing threat to the continued use of ß-lactam antibiotics. The use of the ß-lactam-based serine-ß-lactamase (SBL) inhibitors clavulanic acid, sulbactam, and tazobactam and, more recently, the non-ß-lactam inhibitor avibactam has extended the utility of ß-lactams against bacterial infections demonstrating resistance via these enzymes. These molecules are, however, ineffective against the metallo-ß-lactamases (MBLs), which catalyze their hydrolysis. To date, there are no clinically available metallo-ß-lactamase inhibitors. Coproduction of MBLs and SBLs in resistant infections is thus of major clinical concern. The development of "dual-action" inhibitors, targeting both SBLs and MBLs, is of interest, but this is considered difficult to achieve due to the structural and mechanistic differences between the two enzyme classes. We recently reported evidence that cyclic boronates can inhibit both serine- and metallo-ß-lactamases. Here we report that cyclic boronates are able to inhibit all four classes of ß-lactamase, including the class A extended spectrum ß-lactamase CTX-M-15, the class C enzyme AmpC from Pseudomonas aeruginosa, and class D OXA enzymes with carbapenem-hydrolyzing capabilities. We demonstrate that cyclic boronates can potentiate the use of ß-lactams against Gram-negative clinical isolates expressing a variety of ß-lactamases. Comparison of a crystal structure of a CTX-M-15:cyclic boronate complex with structures of cyclic boronates complexed with other ß-lactamases reveals remarkable conservation of the small-molecule binding mode, supporting our proposal that these molecules work by mimicking the common tetrahedral anionic intermediate present in both serine- and metallo-ß-lactamase catalysis.


Assuntos
Antibacterianos/farmacologia , Ácidos Borônicos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , Motivos de Aminoácidos , Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ácidos Borônicos/síntese química , Clonagem Molecular , Cristalografia por Raios X , Ciclização , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Resistência beta-Lactâmica/genética , Inibidores de beta-Lactamases/síntese química , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
15.
Org Biomol Chem ; 15(28): 6024-6032, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678295

RESUMO

The class D (OXA) serine ß-lactamases are a major cause of resistance to ß-lactam antibiotics. The class D enzymes are unique amongst ß-lactamases because they have a carbamylated lysine that acts as a general acid/base in catalysis. Previous crystallographic studies led to the proposal that ß-lactamase inhibitor avibactam targets OXA enzymes in part by promoting decarbamylation. Similarly, halide ions are proposed to inhibit OXA enzymes via decarbamylation. NMR analyses, in which the carbamylated lysines of OXA-10, -23 and -48 were 13C-labelled, indicate that reaction with avibactam does not ablate lysine carbamylation in solution. While halide ions did not decarbamylate the 13C-labelled OXA enzymes in the absence of substrate or inhibitor, avibactam-treated OXA enzymes were susceptible to decarbamylation mediated by halide ions, suggesting halide ions may inhibit OXA enzymes by promoting decarbamylation of acyl-enzyme complex. Crystal structures of the OXA-10 avibactam complex were obtained with bromide, iodide, and sodium ions bound between Trp-154 and Lys-70. Structures were also obtained wherein bromide and iodide ions occupy the position expected for the 'hydrolytic water' molecule. In contrast with some solution studies, Lys-70 was decarbamylated in these structures. These results reveal clear differences between crystallographic and solution studies on the interaction of class D ß-lactamases with avibactam and halides, and demonstrate the utility of 13C-NMR for studying lysine carbamylation in solution.


Assuntos
Compostos Azabicíclicos/farmacologia , Halogênios/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Compostos Azabicíclicos/química , Isótopos de Carbono , Cristalografia por Raios X , Halogênios/química , Íons/química , Íons/farmacologia , Modelos Moleculares , Conformação Molecular , Inibidores de beta-Lactamases/química
16.
J Chem Inf Model ; 57(7): 1640-1651, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28661143

RESUMO

Small-molecule target identification is an important and challenging task for chemical biology and drug discovery. Structure-based virtual target identification has been widely used, which infers and prioritizes potential protein targets for the molecule of interest (MOI) principally via a scoring function. However, current "universal" scoring functions may not always accurately identify targets to which the MOI binds from the retrieved target database, in part due to a lack of consideration of the important binding features for an individual target. Here, we present IFPTarget, a customized virtual target identification method, which uses an interaction fingerprinting (IFP) method for target-specific interaction analyses and a comprehensive index (Cvalue) for target ranking. Evaluation results indicate that the IFP method enables substantially improved binding pose prediction, and Cvalue has an excellent performance in target ranking for the test set. When applied to screen against our established target library that contains 11,863 protein structures covering 2842 unique targets, IFPTarget could retrieve known targets within the top-ranked list and identified new potential targets for chemically diverse drugs. IFPTarget prediction led to the identification of the metallo-ß-lactamase VIM-2 as a target for quercetin as validated by enzymatic inhibition assays. This study provides a new in silico target identification tool and will aid future efforts to develop new target-customized methods for target identification.


Assuntos
Modelos Moleculares , Proteínas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas/química , Especificidade por Substrato , beta-Lactamases/química , beta-Lactamases/metabolismo
17.
Biochemistry ; 55(4): 733-42, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26771761

RESUMO

Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action.


Assuntos
Bacteriocinas/química , Lactococcus lactis/química , Peptídeos/química , Staphylococcus aureus/química , Peptídeos Catiônicos Antimicrobianos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
18.
Biochemistry ; 55(34): 4798-806, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27525453

RESUMO

Phenol-soluble modulins (PSMs) are peptide virulence factors produced by staphylococci. These peptides contribute to the overall pathogenicity of these bacteria, eliciting multiple immune responses from host cells. Many of the α-type PSMs exhibit cytolytic properties and are able to lyse particular eukaryotic cells, including erythrocytes, neutrophils, and leukocytes. In addition, they also appear to contribute to the protection of the bacterial cell from the host immune response through biofilm formation and detachment. In this study, three of these peptide toxins, PSMs α1, α3, and ß2, normally produced by Staphylococcus aureus, have been synthesized using solid-supported peptide synthesis (SPPS) (PSMα1 and PSMα3) or made by heterologous expression in Escherichia coli (PSMß2). Their three-dimensional structures were elucidated using nuclear magnetic resonance spectroscopy. PSMα1 and PSMα3 each consist of a single amphipathic helix with a slight bend near the N- and C-termini, respectively. PSMß2 contains three amphipathic helices, which fold to produce a "v-like" shape between α-helix 2 and α-helix 3, with α-helix 1 folded over such that it is perpendicular to α-helix 3. The availability of three-dimensional structures permits spatial analysis of features and residues proposed to control the biological activity of these peptide toxins.


Assuntos
Toxinas Bacterianas/química , Staphylococcus aureus/química , Fatores de Virulência/química , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Dicroísmo Circular , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fenol , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Eletricidade Estática , Fatores de Virulência/genética , Fatores de Virulência/toxicidade
19.
Appl Environ Microbiol ; 81(6): 2032-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576609

RESUMO

Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin.


Assuntos
Antibacterianos/biossíntese , Vias Biossintéticas , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Ácido Tenuazônico/análogos & derivados , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Ilhas Genômicas , Lactobacillus plantarum/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Streptococcus mutans/genética , Ácido Tenuazônico/biossíntese
20.
Appl Environ Microbiol ; 81(8): 2910-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681186

RESUMO

Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation.


Assuntos
Bacteriocinas/genética , Lactobacillus acidophilus/genética , Sequência de Aminoácidos , Bacteriocinas/química , Bacteriocinas/metabolismo , Cristalografia por Raios X , Lactobacillus acidophilus/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Família Multigênica , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA