Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 62(17): 2632-2644, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37603581

RESUMO

Allosteric regulation of the essential anaplerotic enzyme, pyruvate carboxylase (PC), is vital for metabolic homeostasis. PC catalyzes the bicarbonate- and ATP-dependent carboxylation of pyruvate to form oxaloacetate. Dysregulation of PC activity can impact glucose and redox metabolism, which contributes to the pathogenicity of many diseases. To maintain homeostasis, PC is allosterically activated by acetyl-CoA and allosterically inhibited by l-aspartate. In this study, we further characterize the molecular basis of allosteric regulation in Staphylococcus aureus PC (SaPC) using slowly/nonhydrolyzable dethia analogues of acetyl-CoA and site-directed mutagenesis of residues at the biotin carboxylase homodimer interface. The dethia analogues fully activate SaPC but demonstrate significantly reduced binding affinities relative to acetyl-CoA. Residues Arg21, Lys46, and Glu418 of SaPC are located at the biotin carboxylase dimer interface and play a critical role in both allosteric activation and inhibition. A structure of R21A SaPC in complex with acetyl-CoA reveals an intact molecule of acetyl-CoA bound at the allosteric site, offering new molecular insights into the acetyl-CoA binding site. This study demonstrates that the biotin carboxylase domain dimer interface is a critical allosteric site in PC, serving as a convergence point for allosteric activation by acetyl-CoA and inhibition by l-aspartate.


Assuntos
Piruvato Carboxilase , Staphylococcus aureus , Sítio Alostérico , Piruvato Carboxilase/genética , Staphylococcus aureus/genética , Acetilcoenzima A , Ácido Aspártico , Polímeros
2.
Chembiochem ; 23(2): e202100487, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34856049

RESUMO

Methylmalonyl-CoA epimerase (MMCE) is proposed to use general acid-base catalysis, but the proposed catalytic glutamic acids are highly asymmetrical in the active site unlike many other racemases. To gain insight into the puzzling relationships between catalytic mechanism, structure, and substrate preference, we solved Streptomyces coelicolor MMCE structures with substrate or 2-nitropropionyl-CoA, an intermediate/transition state analogue. Both ligand bound structures have a planar methylmalonate/2-nitropropionyl moiety indicating a deprotonated C2 with ≥4 Šdistances to either catalytic acid. Both glutamates interact with the carboxylate/nitro group, either directly or through other residues. This suggests the proposed catalytic acids sequentially catalyze proton shifts between C2 and carboxylate of the substrate with an enolate intermediate. In addition, our structures provide a platform to design mutations for expanding substrate scope to support combinatorial biosynthesis.


Assuntos
Racemases e Epimerases/metabolismo , Streptomyces coelicolor/enzimologia , Catálise , Domínio Catalítico , Humanos , Especificidade por Substrato
3.
Biochemistry ; 60(5): 365-372, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33482062

RESUMO

LnmK stereospecifically accepts (2R)-methylmalonyl-CoA, generating propionyl-S-acyl carrier protein to support polyketide biosynthesis. LnmK and its homologues are the only known enzymes that carry out a decarboxylation (DC) and acyl transfer (AT) reaction in the same active site as revealed by structure-function studies. Substrate-assisted catalysis powers LnmK, as decarboxylation of (2R)-methylmalonyl-CoA generates an enolate capable of deprotonating active site Tyr62, and the Tyr62 phenolate subsequently attacks propionyl-CoA leading to a propionyl-O-LnmK acyl-enzyme intermediate. Due to the inherent reactivity of LnmK and methylmalonyl-CoA, a substrate-bound structure could not be obtained. To gain insight into substrate specificity, stereospecificity, and catalytic mechanism, we determined the structures of LnmK with bound substrate analogues that bear malonyl-thioester isosteres where the carboxylate is represented by a nitro or sulfonate group. The nitro-bearing malonyl-thioester isosteres bind in the nitronate form, with specific hydrogen bonds that allow modeling of the (2R)-methylmalonyl-CoA substrate and rationalization of stereospecificity. The sulfonate isosteres bind in multiple conformations, suggesting the large active site of LnmK allows multiple binding modes. Considering the smaller malonyl group has more conformational freedom than the methylmalonyl group, we hypothesized the active site can entropically screen against catalysis with the smaller malonyl-CoA substrate. Indeed, our kinetic analysis reveals malonyl-CoA is accepted at 1% of the rate of methylmalonyl-CoA. This study represents another example of how our nitro- and sulfonate-bearing methylmalonyl-thioester isosteres are of use for elucidating enzyme-substrate binding interactions and revealing insights into catalytic mechanism. Synthesis of a larger panel of analogues presents an opportunity to study enzymes with complicated structure-function relationships such as acyl-CoA carboxylases, trans-carboxytransferases, malonyltransferases, and ß-ketoacylsynthases.


Assuntos
Aciltransferases/química , Carboxiliases/química , Proteína de Transporte de Acila/metabolismo , Acil Coenzima A/química , Carbono-Carbono Ligases/química , Catálise , Domínio Catalítico , Malonil Coenzima A/metabolismo , Streptomyces/metabolismo , Streptomyces coelicolor/metabolismo , Especificidade por Substrato
4.
Biochemistry ; 59(43): 4143-4147, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095002

RESUMO

We previously showed that the bifunctional LnmK acyltransferase/decarboxylase (AT/DC) catalyzed the formation of a propionyl-S-acyl carrier protein (ACP) from methylmalonyl-CoA, but its substrate specificity to (2S)-, (2R)-, or (2RS)-methylmalonyl CoA was not known. We subsequently revealed that LnmK AT and DC activities share the same active site, employing a Tyr as the catalytic residue for AT, but failed to identify a general base within the vicinity of the active site for LnmK catalysis. We now show that (i) LnmK specifies (2R)-methylmalonyl-CoA and (ii) the AT and DC activities are coupled, featuring substrate-assisted catalysis via the enolate to account for the missing general base within the LnmK active site. LnmK and its homologues are the only bifunctional AT/DC enzymes known to date and are widespread. These findings, therefore, enrich PKS chemistry and enzymology. Since only the (2S)-methylmalonyl-CoA enantiomer has been established previously as a substrate for polyketide biosynthesis by PKSs, we now establish a role for both (2R)- and (2S)-methylmalonyl-CoA in polyketide biosynthesis, and (2R)-methylmalonyl-CoA should be considered as a substrate in future efforts for engineered production of polyketides by combinatorial biosynthesis or synthetic biology strategies in model hosts.


Assuntos
Proteína de Transporte de Acila/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Policetídeos/metabolismo , Proteína de Transporte de Acila/química , Acil Coenzima A/química , Aciltransferases/química , Catálise , Domínio Catalítico , Macrolídeos/química , Macrolídeos/metabolismo , Complexos Multienzimáticos/química , Policetídeos/química , Especificidade por Substrato
5.
J Am Chem Soc ; 141(13): 5121-5124, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30869886

RESUMO

Malonyl-thioesters are reactive centers of malonyl-CoA and malonyl- S-acyl carrier protein, essential to fatty acid, polyketide and various specialized metabolite biosynthesis. Enzymes that create or use malonyl-thioesters spontaneously hydrolyze or decarboxylate reactants on the crystallographic time frame preventing determination of structure-function relationships. To address this problem, we have synthesized a panel of methylmalonyl-CoA analogs with the carboxylate represented by a sulfonate or nitro and the thioester retained or represented by an ester or amide. Structures of Escherichia coli methylmalonyl-CoA decarboxylase in complex with our analogs affords insight into substrate binding and the catalytic mechanism. Counterintuitively, the negatively charged sulfonate and nitronate functional groups of our analogs bind in an active site hydrophobic pocket. Upon decarboxylation the enolate intermediate is protonated by a histidine preventing CO2-enolate recombination, yielding propionyl-CoA. Activity assays support a histidine catalytic acid and reveal the enzyme displays significant hydrolysis activity. Our structures also provide insight into this hydrolysis activity. Our analogs inhibit decarboxylation/hydrolysis activity with low micromolar Ki values. This study sets precedents for using malonyl-CoA analogs with carboxyate isosteres to study the complicated structure-function relationships of acyl-CoA carboxylases, trans-carboxytransferases, malonyltransferases and ß-ketoacylsynthases.


Assuntos
Ésteres/metabolismo , Metilmalonil-CoA Descarboxilase/química , Nitrocompostos/química , Compostos de Sulfidrila/metabolismo , Ácidos Sulfônicos/química , Ésteres/química , Metilmalonil-CoA Descarboxilase/metabolismo , Estrutura Molecular , Nitrocompostos/metabolismo , Estereoisomerismo , Compostos de Sulfidrila/química , Ácidos Sulfônicos/metabolismo
6.
Biochemistry ; 57(23): 3278-3288, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29533601

RESUMO

C-1027 is a chromoprotein enediyne antitumor antibiotic, consisting of the CagA apoprotein and the C-1027 chromophore. The C-1027 chromophore features a nine-membered enediyne core appended with three peripheral moieties, including an ( S)-3-chloro-5-hydroxy-ß-tyrosine. In a convergent biosynthesis of the C-1027 chromophore, the ( S)-3-chloro-5-hydroxy-ß-tyrosine moiety is appended to the enediyne core by the free-standing condensation enzyme SgcC5. Unlike canonical condensation domains from the modular nonribosomal peptide synthetases that catalyze amide-bond formation, SgcC5 catalyzes ester-bond formation, as demonstrated in vitro, between SgcC2-tethered ( S)-3-chloro-5-hydroxy-ß-tyrosine and ( R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core as an acceptor substrate. Here, we report that (i) genes encoding SgcC5 homologues are widespread among both experimentally confirmed and bioinformatically predicted enediyne biosynthetic gene clusters, forming a new clade of condensation enzymes, (ii) SgcC5 shares a similar overall structure with the canonical condensation domains but forms a homodimer in solution, the active site of which is located in a cavity rather than a tunnel typically seen in condensation domains, and (iii) the catalytic histidine of SgcC5 activates the 2-hydroxyl group, while a hydrogen-bond network in SgcC5 prefers the R-enantiomer of the acceptor substrate, accounting for the regio- and stereospecific ester-bond formation between SgcC2-tethered ( S)-3-chloro-5-hydroxy-ß-tyrosine and ( R)-1-phenyl-1,2-ethanediol upon acid-base catalysis. These findings expand the catalytic repertoire and reveal new insights into the structure and mechanism of condensation enzymes.


Assuntos
Antibióticos Antineoplásicos , Proteínas de Bactérias , Enedi-Inos , Genes Bacterianos , Peptídeo Sintases , Streptomyces , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Enedi-Inos/química , Enedi-Inos/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Streptomyces/enzimologia , Streptomyces/genética
7.
Biochemistry ; 57(33): 5005-5013, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30070831

RESUMO

Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140. Both in vivo and in vitro characterization of the LNM biosynthetic machinery have established the formation of the 18-membered macrolactam backbone and the C-3 alkyl branch; the nascent product, LNM E1, of the hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS); and the generation of the thiol moiety at C-3 of LNM E1. However, the tailoring steps converting LNM E1 to LNM are still unknown. Based on gene inactivation and chemical investigation of three mutant strains, we investigated the tailoring steps catalyzed by two cytochromes P450 (P450s), LnmA and LnmZ, in LNM biosynthesis. Our studies revealed that (i) LnmA and LnmZ regio- and stereoselectively hydroxylate the C-8 and C-4' positions, respectively, on the scaffold of LNM; (ii) both LnmA and LnmZ exhibit substrate promiscuity, resulting in multiple LNM analogs from several shunt pathways; and (iii) the C-8 and C-4' hydroxyl groups play important roles in the cytotoxicity of LNM analogs against different cancer cell lines, shedding light on the structure-activity relationships of the LNM scaffold and the LNM-type natural products in general. These studies set the stage for future biosynthetic pathway engineering and combinatorial biosynthesis of the LNM family of natural products for structure diversity and drug discovery.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Lactamas Macrocíclicas/metabolismo , Lactamas/metabolismo , Macrolídeos/metabolismo , Tiazóis/metabolismo , Tionas/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/toxicidade , Vias Biossintéticas , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Inativação Gênica , Humanos , Hidroxilação , Lactamas/química , Lactamas/toxicidade , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/toxicidade , Macrolídeos/química , Macrolídeos/toxicidade , Estrutura Molecular , Família Multigênica , Estereoisomerismo , Streptomyces/genética , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/toxicidade , Tionas/química , Tionas/toxicidade
8.
Biochemistry ; 57(6): 1003-1011, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29341603

RESUMO

Recent biochemical characterizations of the MdpB2 CoA ligase and MdpB1 C-methyltransferase (C-MT) from the maduropeptin (MDP, 2) biosynthetic machinery revealed unusual pathway logic involving C-methylation occurring on a CoA-activated aromatic substrate. Here we confirmed this pathway logic for the biosynthesis of polyketomycin (POK, 3). Biochemical characterization unambiguously established that PokM3 and PokMT1 catalyze the sequential conversion of 6-methylsalicylic acid (6-MSA, 4) to form 3,6-dimethylsalicylyl-CoA (3,6-DMSA-CoA, 6), which serves as the direct precursor for the 3,6-dimethylsalicylic acid (3,6-DMSA) moiety in the biosynthesis of 3. PokMT1 catalyzes the C-methylation of 6-methylsalicylyl-CoA (6-MSA-CoA, 5) with a kcat of 1.9 min-1 and a Km of 2.2 ± 0.1 µM, representing the most proficient C-MT characterized to date. Bioinformatics analysis of MTs from natural product biosynthetic machineries demonstrated that PokMT1 and MdpB1 belong to a phylogenetic clade of C-MTs that preferably act on aromatic acids. Significantly, this clade includes the structurally characterized enzyme SibL, which catalyzes C-methylation of 3-hydroxykynurenine in its free acid form, using two conserved tyrosine residues for catalysis. A homology model and site-directed mutagenesis suggested that PokMT1 also employs this unusual arrangement of tyrosine residues to coordinate C-methylation but revealed a large cavity capable of accommodating the CoA moiety tethered to 5. CoA activation of the aromatic acid substrate may represent a general strategy that could be exploited to improve catalytic efficiency. This study sets the stage to further investigate and exploit the catalytic utility of this emerging family of C-MTs in biocatalysis and synthetic biology.


Assuntos
Antibacterianos/metabolismo , Coenzima A/metabolismo , Glioxilatos/metabolismo , Metiltransferases/metabolismo , Streptomyces/enzimologia , Vias Biossintéticas , Clonagem Molecular , Coenzima A Ligases/metabolismo , Metiltransferases/genética , Filogenia , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato
9.
Proc Natl Acad Sci U S A ; 112(33): 10359-64, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240335

RESUMO

Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent ß-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.


Assuntos
Antibióticos Antineoplásicos/química , Carbono/química , Policetídeo Sintases/química , Sulfetos/química , Liases de Carbono-Enxofre/química , Biologia Computacional , Cisteína/química , Desenho de Fármacos , Lactamas/química , Macrolídeos/química , Família Multigênica , Filogenia , Policetídeos/química , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Streptomyces/metabolismo , Especificidade por Substrato , Compostos de Sulfidrila , Tiazóis/química , Tionas/química
10.
Proc Natl Acad Sci U S A ; 112(41): 12693-8, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26420866

RESUMO

Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.


Assuntos
Evolução Molecular , Policetídeo Sintases/química , Cristalografia por Raios X , Policetídeo Sintases/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 112(27): 8278-83, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26056295

RESUMO

Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140, featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. Upon reductive activation in the presence of cellular thiols, LNM exerts its antitumor activity by an episulfonium ion-mediated DNA alkylation. Previously, we have cloned the lnm gene cluster from S. atroolivaceus S-140 and characterized the biosynthetic machinery responsible for the 18-membered lactam backbone and the alkyl branch at C3 of LNM. We now report the isolation and characterization of leinamycin E1 (LNM E1) from S. atroolivacues SB3033, a ΔlnmE mutant strain of S. atroolivaceus S-140. Complementary to the reductive activation of LNM by cellular thiols, LNM E1 can be oxidatively activated by cellular reactive oxygen species (ROS) to generate a similar episulfonium ion intermediate, thereby alkylating DNA and leading to eventual cell death. The feasibility of exploiting LNM E1 as an anticancer prodrug activated by ROS was demonstrated in two prostate cancer cell lines, LNCaP and DU-145. Because many cancer cells are under higher cellular oxidative stress with increased levels of ROS than normal cells, these findings support the idea of exploiting ROS as a means to target cancer cells and highlight LNM E1 as a novel lead for the development of anticancer prodrugs activated by ROS. The structure of LNM E1 also reveals critical new insights into LNM biosynthesis, setting the stage to investigate sulfur incorporation, as well as the tailoring steps that convert the nascent hybrid peptide-polyketide biosynthetic intermediate into LNM.


Assuntos
Antineoplásicos/metabolismo , Lactamas/metabolismo , Macrolídeos/metabolismo , Pró-Fármacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/metabolismo , Tionas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lactamas/química , Macrolídeos/química , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Streptomyces/genética , Streptomyces/metabolismo , Tiazóis/química , Tionas/química
12.
Biochemistry ; 55(36): 5142-54, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27560143

RESUMO

C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-ß-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-ß-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar ß-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.


Assuntos
Aminoglicosídeos/biossíntese , Antibacterianos/biossíntese , Sarcoglicanas/química , Streptomyces/metabolismo , Catálise , Cristalografia por Raios X , Enedi-Inos , Humanos , Hidroxilação
13.
Proc Natl Acad Sci U S A ; 110(20): 8069-74, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23633564

RESUMO

4-Methylideneimidazole-5-one (MIO)-containing aminomutases catalyze the conversion of L-α-amino acids to ß-amino acids with either an (R) or an (S) configuration. L-phenylalanine and L-tyrosine are the only two natural substrates identified to date. The enediyne chromophore of the chromoprotein antitumor antibiotic kedarcidin (KED) harbors an (R)-2-aza-3-chloro-ß-tyrosine moiety reminiscent of the (S)-3-chloro-5-hydroxy-ß-tyrosine moiety of the C-1027 enediyne chromophore, the biosynthesis of which uncovered the first known MIO-containing aminomutase, SgcC4. Comparative analysis of the KED and C-1027 biosynthetic gene clusters inspired the proposal for (R)-2-aza-3-chloro-ß-tyrosine biosynthesis starting from 2-aza-L-tyrosine, featuring KedY4 as a putative MIO-containing aminomutase. Here we report the biochemical characterization of KedY4, confirming its proposed role in KED biosynthesis. KedY4 is an MIO-containing aminomutase that stereospecifically catalyzes the conversion of 2-aza-L-tyrosine to (R)-2-aza-ß-tyrosine, exhibiting no detectable activity toward 2-aza-L-phenylalanine or L-tyrosine as an alternative substrate. In contrast, SgcC4, which stereospecifically catalyzes the conversion of L-tyrosine to (S)-ß-tyrosine in C-1027 biosynthesis, exhibits minimal activity with 2-aza-L-tyrosine as an alternative substrate but generating (S)-2-aza-ß-tyrosine, a product with the opposite stereochemistry of KedY4. This report of KedY4 broadens the scope of known substrates for the MIO-containing aminomutase family, and comparative studies of KedY4 and SgcC4 provide an outstanding opportunity to examine how MIO-containing aminomutases control substrate specificity and product enantioselectivity.


Assuntos
Cicloparafinas/química , Enedi-Inos/química , Imidazóis/química , Transferases Intramoleculares/química , Naftalenos/química , Amônia/química , Antineoplásicos/farmacologia , Biologia Computacional , Imidazóis/metabolismo , Transferases Intramoleculares/metabolismo , Cinética , Liases/química , Dados de Sequência Molecular , Fenilalanina/química , Streptomyces/metabolismo , Especificidade por Substrato , Tirosina/química
14.
Biochemistry ; 54(24): 3851-9, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26039897

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA.


Assuntos
Modelos Moleculares , Proteínas do Tecido Nervoso/química , Precursores de RNA/química , RNA Mensageiro/química , Ataxias Espinocerebelares/genética , Ataxina-10 , Cristalização , Cristalografia por Raios X , Expansão das Repetições de DNA/genética , DNA Recombinante/metabolismo , Humanos , Ligação de Hidrogênio , Íntrons , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ataxias Espinocerebelares/metabolismo , Eletricidade Estática , Propriedades de Superfície
15.
Biochemistry ; 54(45): 6842-51, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26512730

RESUMO

The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 Å, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein-ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.


Assuntos
Antibióticos Antineoplásicos/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Resistência Microbiana a Medicamentos/fisiologia , Streptomyces/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Configuração de Carboidratos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sequência Conservada , Cristalização , Cristalografia por Raios X , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Glicopeptídeos/metabolismo , Glicopeptídeos/farmacologia , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 25(1): 9-15, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25434000

RESUMO

The enediyne natural products have been explored for their phenomenal cytotoxicity. The development of enediynes into anticancer drugs has been successfully achieved through the utilization of polymer- and antibody-drug conjugates (ADCs) as drug delivery systems. An increasing inventory of enediynes would benefit current application of ADCs in many oncology programs. Innovations in expanding the enediyne inventory should take advantage of the current knowledge of enediyne biosynthesis and post-genomics technologies. Bioinformatics analysis of microbial genomes reveals that enediynes are underexplored, in particular from Actinomycetales. This digest highlights the emerging opportunities to explore microbial genomics for the discovery of novel enediyne natural products.


Assuntos
Antineoplásicos/química , Descoberta de Drogas/tendências , Enedi-Inos/química , Genoma Microbiano/genética , Genômica/tendências , Animais , Antineoplásicos/farmacologia , Enedi-Inos/farmacologia , Genoma Microbiano/efeitos dos fármacos , Humanos
17.
Biochemistry ; 53(49): 7854-65, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25405956

RESUMO

Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure-activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Família Multigênica , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Streptomyces/enzimologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/isolamento & purificação , Antibióticos Antineoplásicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Reatores Biológicos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Inativação Gênica , Humanos , Macrolídeos/química , Macrolídeos/isolamento & purificação , Macrolídeos/metabolismo , Macrolídeos/farmacologia , Dados de Sequência Molecular , Estrutura Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neoplasias/tratamento farmacológico , Piperidonas/química , Piperidonas/isolamento & purificação , Piperidonas/metabolismo , Piperidonas/farmacologia , Policetídeo Sintases/antagonistas & inibidores , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Streptomyces/genética , Relação Estrutura-Atividade
18.
Proteins ; 82(7): 1210-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25050442

RESUMO

Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl-carrier proteins (PCPs) or acyl-carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Modelos Moleculares , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Biologia Computacional , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência
19.
J Nat Prod ; 77(10): 2296-303, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25238028

RESUMO

Natural products offer unmatched chemical and structural diversity compared to other small-molecule libraries, but traditional natural product discovery programs are not sustainable, demanding too much time, effort, and resources. Here we report a strain prioritization method for natural product discovery. Central to the method is the application of real-time PCR, targeting genes characteristic to the biosynthetic machinery of natural products with distinct scaffolds in a high-throughput format. The practicality and effectiveness of the method were showcased by prioritizing 1911 actinomycete strains for diterpenoid discovery. A total of 488 potential diterpenoid producers were identified, among which six were confirmed as platensimycin and platencin dual producers and one as a viguiepinol and oxaloterpin producer. While the method as described is most appropriate to prioritize strains for discovering specific natural products, variations of this method should be applicable to the discovery of other classes of natural products. Applications of genome sequencing and genome mining to the high-priority strains could essentially eliminate the chance elements from traditional discovery programs and fundamentally change how natural products are discovered.


Assuntos
Actinobacteria/química , Produtos Biológicos/química , Reação em Cadeia da Polimerase em Tempo Real , Adamantano/química , Aminobenzoatos/química , Aminofenóis/química , Anilidas/química , Estrutura Molecular , Compostos Policíclicos/química , Bibliotecas de Moléculas Pequenas
20.
J Nat Prod ; 77(2): 377-87, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24484381

RESUMO

Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products.


Assuntos
Actinobacteria/química , Produtos Biológicos/farmacologia , Diterpenos/farmacologia , Produtos Biológicos/química , Diterpenos/química , Descoberta de Drogas , Estrutura Molecular , Policetídeo Sintases/metabolismo , Policetídeos , Reação em Cadeia da Polimerase , Streptomyces griseus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA