Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7967): 951-958, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258675

RESUMO

Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.

2.
Langmuir ; 36(10): 2629-2634, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32069411

RESUMO

Supported lipid bilayer (SLB) membranes are key elements to mimic membrane interfaces on a planar surface. Here, we demonstrate that azobenzene photolipids (azo-PC) form fluid, homogeneous SLBs. Diffusion properties of azo-PC within SLBs were probed by fluorescence microscopy and fluorescence recovery after photobleaching. At ambient conditions, we find that the trans-to-cis isomerization causes an increase of the diffusion constant by a factor of two. Simultaneous excitation with two wavelengths and variable intensities furthermore allows to adjust the diffusion constant D continuously. X-ray reflectometry and small-angle scattering measurements reveal that membrane photoisomerization results in a bilayer thickness reduction of ∼0.4 nm (or 10%). While thermally induced back-switching is not observed, we find that the trans bilayer fluidity is increasing with higher temperatures. This change in diffusion constant is accompanied by a red-shift in the absorption spectra. Based on these results, we suggest that the reduced diffusivity of trans-azo-PC is controlled by intermolecular interactions that also give rise to H-aggregate formation in bilayer membranes.

3.
Chemphyschem ; 18(23): 3437-3442, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984078

RESUMO

Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Estrutura Molecular
4.
Nanoscale Horiz ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240539

RESUMO

Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.

5.
Nat Commun ; 14(1): 7192, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938571

RESUMO

The label-free identification of individual proteins from liquid samples by surface-enhanced Raman scattering (SERS) spectroscopy is a highly desirable goal in biomedical diagnostics. However, the small Raman scattering cross-section of most (bio-)molecules requires a means to strongly amplify their Raman signal for successful measurement, especially for single molecules. This amplification can be achieved in a plasmonic hotspot that forms between two adjacent gold nanospheres. However, the small (≈1-2 nm) gaps typically required for single-molecule measurements are not accessible for most proteins. A useful strategy would thus involve dimer structures with gaps large enough to accommodate single proteins, whilst providing sufficient field enhancement for single-molecule SERS. Here, we report on using a DNA origami scaffold for tip-to-tip alignment of gold nanorods with an average gap size of 8 nm. The gaps are accessible to streptavidin and thrombin, which are captured at the plasmonic hotspot by specific anchoring sites on the origami template. The field enhancement achieved for the nanorod dimers is sufficient for single-protein SERS spectroscopy with sub-second integration times. This design for SERS probes composed of DNA origami with accessible hotspots promotes future use for single-molecule biodiagnostics in the near-infrared range.


Assuntos
Nanosferas , Nanotubos , Análise Espectral Raman , DNA , Ouro , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA