RESUMO
Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.
Assuntos
Barreira Hematoencefálica/imunologia , Colagenases/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Inibidores Teciduais de Metaloproteinases/imunologia , Animais , Anexina A1/farmacologia , Barreira Hematoencefálica/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Masculino , Camundongos , Proteínas Recombinantes/farmacologiaRESUMO
Endothelial cells from microvasculature are directly involved in a large number of vascular diseases; however, culture of these cells is problematic, since most methodologies employ proteolytic enzymes or mechanical techniques, leading to cell damage and contamination of endothelial cultures with other cellular types. Besides, primary cultured cells have a short life span in vitro and undergo replicative senescence after 3-4 passages, limiting long-term studies. In the present work we report the generation of a spontaneously immortalized endothelial culture obtained from mice pulmonary capillaries. Firstly, primary (third passage) and immortalized (100th) cultures were established. Further, monoclonal populations were obtained by serial dilutions from immortalized cultures. Cells were analyzed according to: (1) morphological appearance, (2) expression of specific endothelial markers by fluorescent staining [von Willebrand Factor (vWF), endothelial nitric oxide synthase (eNOS), angiotensin converting enzyme (ACE) and Ulex europaeus (UEA-1)] and by flow cytometry (endoglin, VE-cadherin and VCAM-1), and (3) release of nitric oxide (NO), assessed by the specific fluorescent dye DAF-2 DA, and prostacyclin (PGI2), quantified by enzyme immune assay. In both cultures cells grew in monolayers and presented cobblestone appearance at confluence. Positive staining for vWF, eNOS, ACE and UEA-1 was detected in cloned as well as in early-passage cultured cells. Similarly, cultures presented equal expressions of endoglin, VE-cadherin and VCAM-1. Values of NO and PGI2 levels did not differ between cultures. From these results we confirm that the described spontaneously immortalized endothelial cell line is capable of unlimited growth and retains typical morphological and functional properties exhibited by primary cultured cells. Therefore, the endothelial cell line described in the present study can become a suitable tool in the field of endothelium research and can be useful for the investigation of production of endothelial mediators, angiogenesis and inflammation.
Assuntos
Células Endoteliais/citologia , Microcirculação , Cultura Primária de Células/métodos , Animais , Linhagem Celular Transformada , Proliferação de Células , Separação Celular/métodos , Forma Celular , Transformação Celular Neoplásica/patologia , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Citometria de Fluxo , Pulmão/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/fisiologiaRESUMO
Correction for 'PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities' by Yajie Zhang et al., Nanoscale, 2020, 12, 4988-5002, DOI: .
RESUMO
Designing theranostic nanocarriers with high protein payload and multimodality tracking without cross interferences between the different imaging probes and the delicate protein cargo is challenging. Here, chemical modifications of poly(lactic-co-glycolic acid) (PLGA) to produce nanocapsules (NCs) that incorporate several imaging moieties are reported. The biocompatible and biodegradable PLGA-NCs can be endowed with a magnetic resonance imaging (MRI) reporter, two fluorescence imaging probes (blue/NIR) and a positron emission tomography (PET) reporter. The modular integration of these imaging moieties into the shell of the NCs is successfully achieved without affecting the morphochemical properties of the nanocarrier or the protein loading capacity. In vivo biodistribution of the NCs is monitored by MRI, PET and NIRF and the results from different techniques are analyzed comparatively. The viabilities of two different human endothelial cells in vitro show no toxicity for NC concentration up to 100 µg mL-1. The morbidity of mice for 2 weeks after systemic administration and the hepatic/pancreatic enzymes at the plasma level indicate their in vivo biosafety. In summary, the new theranostic PLGA nanoplatform presented here shows versatile in vitro/in vivo multimodal imaging capabilities, excellent biosafety and over 1 wt% protein loading.
Assuntos
Meios de Contraste , Portadores de Fármacos , Imageamento por Ressonância Magnética , Nanoestruturas , Imagem Óptica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular , Meios de Contraste/química , Meios de Contraste/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologiaRESUMO
Embryo implantation into the uterine wall is a highly modulated, complex process. We previously demonstrated that Annexin A1 (AnxA1), which is a protein secreted by epithelial and inflammatory cells in the uterine microenvironment, controls embryo implantation in vivo. Here, we decipher the effects of recombinant AnxA1 in this phenomenon by using human trophoblast cell (BeWo) spheroids and uterine epithelial cells (Ishikawa; IK). AnxA1-treated IK cells demonstrated greater levels of spheroid adherence and upregulation of the tight junction molecules claudin-1 and zona occludens-1, as well as the glycoprotein mucin-1 (Muc-1). The latter effect of AnxA1 was not mediated through IL-6 secreted from IK cells, a known inducer of Muc-1 expression. Rather, these effects of AnxA1 involved activation of the formyl peptide receptors FPR1 and FPR2, as pharmacological blockade of FPR1 or FPR1/FPR2 abrogated such responses. The downstream actions of AnxA1 were mediated through the ERK1/2 phosphorylation pathway and F-actin polymerization in IK cells, as blockade of ERK1/2 phosphorylation reversed AnxA1-induced Muc-1 and claudin-1 expression. Moreover, FPR2 activation by AnxA1 induced vascular endothelial growth factor (VEGF) secretion by IK cells, and the supernatant of AnxA1-treated IK cells evoked angiogenesis in vitro. In conclusion, these data highlight the role of the AnxA1/FPR1/FPR2 pathway in uterine epithelial control of blastocyst implantation.
Assuntos
Anexina A1/metabolismo , Blastocisto/metabolismo , Receptores de Formil Peptídeo/metabolismo , Útero/fisiologia , Actinas/metabolismo , Animais , Linhagem Celular , Claudina-1/metabolismo , Implantação do Embrião , Células Epiteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Mucina-1/metabolismo , Neovascularização Fisiológica , Polimerização , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
Annexin A1 (ANXA1) is an endogenously produced anti-inflammatory protein, which plays an important role in the pathophysiology of diseases associated with chronic inflammation. We demonstrate that patients with type-2 diabetes have increased plasma levels of ANXA1 when compared to normoglycemic subjects. Plasma ANXA1 positively correlated with fatty liver index and elevated plasma cholesterol in patients with type-2 diabetes, suggesting a link between aberrant lipid handling, and ANXA1. Using a murine model of high fat diet (HFD)-induced insulin resistance, we then investigated (a) the role of endogenous ANXA1 in the pathophysiology of HFD-induced insulin resistance using ANXA1-/- mice, and (b) the potential use of hrANXA1 as a new therapeutic approach for experimental diabetes and its microvascular complications. We demonstrate that: (1) ANXA1-/- mice fed a HFD have a more severe diabetic phenotype (e.g., more severe dyslipidemia, insulin resistance, hepatosteatosis, and proteinuria) compared to WT mice fed a HFD; (2) treatment of WT-mice fed a HFD with hrANXA1 attenuated the development of insulin resistance, hepatosteatosis and proteinuria. We demonstrate here for the first time that ANXA1-/- mice have constitutively activated RhoA. Interestingly, diabetic mice, which have reduced tissue expression of ANXA1, also have activated RhoA. Treatment of HFD-mice with hrANXA1 restored tissue levels of ANXA1 and inhibited RhoA activity, which, in turn, resulted in restoration of the activities of Akt, GSK-3ß and endothelial nitric oxide synthase (eNOS) secondary to re-sensitization of IRS-1 signaling. We further demonstrate in human hepatocytes that ANXA1 protects against excessive mitochondrial proton leak by activating FPR2 under hyperglycaemic conditions. In summary, our data suggest that (a) ANXA1 is a key regulator of RhoA activity, which restores IRS-1 signal transduction and (b) recombinant human ANXA1 may represent a novel candidate for the treatment of T2D and/or its complications.
Assuntos
Anexina A1/genética , Anexina A1/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Anexina A1/sangue , Colesterol/sangue , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/fisiopatologia , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Humanos , Hiperglicemia/fisiopatologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismoRESUMO
PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections.
Assuntos
Imunidade Inata/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Sistema Respiratório/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Administração Intranasal , Animais , Western Blotting , Moléculas de Adesão Celular/sangue , Ensaio de Imunoadsorção Enzimática , Rim/efeitos dos fármacos , Rim/imunologia , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Absorção Nasal , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Bifenilos Policlorados/administração & dosagem , Bifenilos Policlorados/farmacocinética , Ratos Wistar , Receptores de Hidrocarboneto Arílico/metabolismo , Explosão Respiratória/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismoRESUMO
Kinin B(1) and B(2) receptors play an essential role in inflammatory process and cardiovascular homeostasis. The present study investigated the vascular reactivity and nitric oxide (NO) generation in the isolated mesenteric arteriolar bed from B(1) (B(1)(-/-)) and B(2) receptor (B(2)(-/-)) knockout mice. Endothelial-dependent relaxation was significantly decreased in arterioles from both B(1)(-/-) and B(2)(-/-) in comparison to wild type (WT) mice, with no differences for endothelial-independent relaxating or vasoconstrictor agents. Plasmatic and vascular NO production were markedly reduced in both B(1)(-/-) and B(2)(-/-). In contrast, in the presence of l-arginine, Ca(2+) and co-factors for the enzyme, NO synthase activity was higher in homogenates of mesenteric vessels of B(1)(-/-) and B(2)(-/-). The present study demonstrated that targeted deletion of B(1) or B(2) receptor gene in mice induces important alterations in the vascular reactivity of resistance vessels and NO metabolism. The severe impairment in the endothelial-mediated vasodilation accompanied by decreased NO bioavailability, despite the augmented NOS activity, strongly indicates an exacerbation of NO inactivation in B(1)(-/-) and B(2)(-/-) vessels. The present data provide valuable information in order to clarify the relevance of kinin receptors in regulating vascular physiology and may point to new approaches regarding its correlation with endothelial dysfunction, oxidative stress and NO availability.