Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(2): 1470-1479, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574608

RESUMO

The Timepix (TPX) is a position- and time-sensitive pixelated charge detector that can be coupled with time-of-flight mass spectrometry (TOF MS) in combination with microchannel plates (MCPs) for the spatially and temporally resolved detection of biomolecules. Earlier generation TPX detectors used in previous studies were limited by a moderate time resolution (at best 10 ns) and single-stop detection for each pixel that hampered the detection of ions with high mass-to-charge (m/z) values at high pixel occupancies. In this study, we have coupled an MCP-phosphor screen-TPX3CAM detection assembly that contains a silicon-coated TPX3 chip to a matrix-assisted laser desorption/ionization (MALDI)-axial TOF MS. A time resolution of 1.5625 ns, per-pixel multihit functionality, simultaneous measurement of TOF and time-over-threshold (TOT) values, and kHz readout rates of the TPX3 extended the m/z detection range of the TPX detector family. The detection of singly charged intact Immunoglobulin M ions of m/z value approaching 1 × 106 Da has been demonstrated. We also discuss the utilization of additional information on impact coordinates and TOT provided by the TPX3 compared to conventional MS detectors for the enhancement of the quality of the mass spectrum in terms of signal-to-noise (S/N) ratio. We show how the reduced dead time and event-based readout in TPX3 compared to the TPX improves the sensitivity of high m/z detection in both low and high mass measurements (m/z range: 757-970,000 Da). We further exploit the imaging capabilities of the TPX3 detector for the spatial and temporal separation of neutral fragments generated by metastable decay at different locations along the field-free flight region by simultaneous application of deflection and retarding fields.


Assuntos
Diagnóstico por Imagem , Silício , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Íons , Lasers
2.
J Chem Phys ; 147(1): 013919, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688405

RESUMO

A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 µm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (104 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

3.
J Phys Chem A ; 118(10): 1826-31, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24527983

RESUMO

Mass-resolved (2 + n) resonance-enhanced multiphoton ionization (REMPI) spectra of CH2Br2 in the two-photon resonance excitation region from 71 200 to 82 300 cm(-1) were recorded and analyzed. Spectral structures allowed characterization of new molecular Rydberg states. C*((1)D2) was found to be an important intermediate in the photodissociation processes. A broad spectral feature peaking at about 80 663 cm(-1) in the C(+) spectrum and frequently seen in related studies is reinterpreted and associated with switching between three- and two-photon ionization of C*((1)D2). Analysis of band structures due to transitions from the A(2)Δ state of CH* that were seen in the CH(+) and C(+) REMPI spectra allowed characterization of three electronic states of CH, assigned as E(2)Π, D(2)Π, and F(2)Σ(+), which clarifies a long-term puzzle concerning the energetics of the CH radical. Predissociation of the E, D, and F states to form C*((1)D2) occurs. Bromine atomic lines were observed and are believed to be associated with bromine atom formation via predissociation of CH2Br2 Rydberg states.

4.
J Chem Phys ; 138(4): 044308, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387585

RESUMO

(2 + n) resonance enhanced multiphoton ionization mass spectra for resonance excitations to diabatic E(1)Σ(+) (v') Rydberg and V (1)Σ(+) (v') ion-pair states (adiabatic B(1)Σ(+)(v') states) of H(i)Cl (i = 35,37) and H(i)Br (i = 79,81) were recorded as a function of excitation wavenumber (two-dimensional REMPI). Simulation analyses of ion signal intensities, deperturbation analysis of line shifts and interpretations of line-widths are used to derive qualitative and quantitative information concerning the energetics of the states, off-resonance interactions between the E states and V states, closest in energy as well as on predissociation channels. Spectroscopic parameters for the E(1)Σ(+) (v')(v' = 1) for H(35)Cl and v' = 0 for H(79)Br states, interaction strengths for E - V state interactions and parameters relevant to dissociation of the E states are derived. An overall interaction and dynamical scheme, to describe the observations for HBr, is proposed.

5.
J Chem Phys ; 136(21): 214315, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22697551

RESUMO

Mass spectra were recorded for one-colour resonance enhanced multiphoton ionization (REMPI) of H(i)Br (i = 79, 81) for the two-photon resonance excitation region 79,040-80,300 cm(-1) to obtain two-dimensional REMPI data. The data were analysed in terms of rotational line positions, intensities, and line-widths. Quantitative analysis of the data relevant to near-resonance interactions between the F(1)Δ(2)(v' = 1) and V(1)Σ(+)(v' = m + 7) states gives interaction strengths, fractional state mixing, and parameters relevant to dissociation of the F state. Qualitative analysis further reveals the nature of state interactions between ion-pair states and the E(1)Σ(+) (v' = 1) and H(1)Σ(+)(v' = 0) Rydberg states in terms of relative strengths and J' dependences. Large variety in line-widths, depending on electronic states and J' quantum numbers, is indicative of number of different predissociation channels. The relationship between line-widths, line-shifts, and signal intensities reveals dissociation mechanisms involving ion-pair to Rydberg state interactions prior to direct or indirect predissociations of Rydberg states. Quantum interference effects are found to be important. Moreover, observed bromine atom (2 + 1) REMPI signals support the importance of Rydberg state predissociation channels. A band system, not previously observed in REMPI, was observed and assigned to the k(3)Π(0)(v' = 0) ←← X transition with band origin 80,038 cm(-1) and rotational parameter B(v('))=7.238 cm(-1).

6.
J Chem Phys ; 134(16): 164302, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21528955

RESUMO

Mass spectra were recorded for (2 + n) resonance enhanced multiphoton ionization (REMPI) of HCl as a function of resonance excitation energy in the 88865-89285 cm(-1) region to obtain two-dimensional REMPI data. Band spectra due to two-photon resonance transitions to number of Rydberg states (Ω' = 0, 1, and 2) and the ion-pair state V((1)Σ(+)(Ω' = 0)) for H(35)Cl and H(37)Cl were identified, assigned, and analyzed with respect to Rydberg to ion-pair interactions. Perturbations show as line-, hence energy level-, shifts, as well as ion signal intensity variations with rotational quantum numbers, J', which, together, allowed determination of parameters relevant to the nature and strength of the state interactions as well as dissociation and ionization processes. Whereas near-resonance, level-to-level, interactions are found to be dominant in heterogeneous state interactions (ΔΩ ≠ 0) significant off-resonance interactions are observed in homogeneous interactions (ΔΩ = 0). The alterations in Cl(+) and HCl(+) signal intensities prove to be very useful for spectra assignments. Data relevant to excitations to the j(3)Σ(0(+)) Rydberg states and comparison with (3 + n) REMPI spectra allowed reassignment of corresponding spectra peaks. A band previously assigned to an Ω = 0 Rydberg state was reassigned to an Ω = 2 state (ν(0) = 88957.6 cm(-1)).

7.
Opt Express ; 18(3): 2573-8, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174086

RESUMO

In this paper, a high voltage and fast pulse discharge circuit is developed and combined with laser ablation to enhance optical emission from Si crystal. The new characters of the discharge circuit and its effect on the plasma emission are presented. Characterizing by a damping and periodical oscillating discharge voltage and current with a short period of approximately 0.5 micros, the discharge automatically occurs approximately 1 micros after laser ablation. Significant optical emission enhancement, up to 52 times improved signal intensity relative to the signal in the absence of the discharge spark, is observed. Better line stability in terms of relative standard deviation and improved signal to noise (S/N) ratio are also achieved. The enhanced line intensity with better stability and S/N ratio, similar with the observation when using double-pulse laser induced breakdown spectroscopy (DP-LIBS), probably will benefit element analysis in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA