Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37874949

RESUMO

Dynamic tuning of the poly(A) tail is a crucial mechanism for controlling translation and stability of eukaryotic mRNA. Achieving a comprehensive understanding of how this regulation occurs requires unbiased abundance quantification of poly(A)-tail transcripts and simple poly(A)-length measurement using high-throughput sequencing platforms. Current methods have limitations due to complicated setups and elaborate library preparation plans. To address this, we introduce central limit theorem (CLT)-managed RNA-seq (CLT-seq), a simple and straightforward homopolymer-sequencing method. In CLT-seq, an anchor-free oligo(dT) primer rapidly binds to and unbinds from anywhere along the poly(A) tail string, leading to position-directed reverse transcription with equal probability. The CLT mechanism enables the synthesized poly(T) lengths, which correspond to the templated segment of the poly(A) tail, to distribute normally. Based on a well-fitted pseudogaussian-derived poly(A)-poly(T) conversion model, the actual poly(A)-tail profile is reconstructed from the acquired poly(T)-length profile through matrix operations. CLT-seq follows a simple procedure without requiring RNA-related pre-treatment, enrichment or selection, and the CLT-shortened poly(T) stretches are more compatible with existing sequencing platforms. This proof-of-concept approach facilitates direct homopolymer base-calling and features unbiased RNA-seq. Therefore, CLT-seq provides unbiased, robust and cost-efficient transcriptome-wide poly(A)-tail profiling. We demonstrate that CLT-seq on the most common Illumina platform delivers reliable poly(A)-tail profiling at a transcriptome-wide scale in human cellular contexts. We find that the poly(A)-tail-tuned ncRNA regulation undergoes a dynamic, complex process similar to mRNA regulation. Overall, CLT-seq offers a simplified, effective and economical approach to investigate poly(A)-tail regulation, with potential implications for understanding gene expression and identifying therapeutic targets.


Assuntos
Perfilação da Expressão Gênica , Poliadenilação , Humanos , Análise de Sequência de RNA/métodos , RNA Mensageiro/genética , Transcriptoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
2.
Chem Rev ; 123(8): 4353-4415, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36972332

RESUMO

Vanadium oxides with multioxidation states and various crystalline structures offer unique electrical, optical, optoelectronic and magnetic properties, which could be manipulated for various applications. For the past 30 years, significant efforts have been made to study the fundamental science and explore the potential for vanadium oxide materials in ion batteries, water splitting, smart windows, supercapacitors, sensors, and so on. This review focuses on the most recent progress in synthesis methods and applications of some thermodynamically stable and metastable vanadium oxides, including but not limited to V2O3, V3O5, VO2, V3O7, V2O5, V2O2, V6O13, and V4O9. We begin with a tutorial on the phase diagram of the V-O system. The second part is a detailed review covering the crystal structure, the synthesis protocols, and the applications of each vanadium oxide, especially in batteries, catalysts, smart windows, and supercapacitors. We conclude with a brief perspective on how material and device improvements can address current deficiencies. This comprehensive review could accelerate the development of novel vanadium oxide structures in related applications.

3.
Chem Rev ; 123(11): 7025-7080, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053573

RESUMO

Thermochromic energy efficient windows represent an important protocol technology for advanced architectural windows with energy-saving capabilities through the intelligent regulation of indoor solar irradiation and the modulation of window optical properties in response to real-time temperature stimuli. In this review, recent progress in some promising thermochromic systems is summarized from the aspects of structures, the micro-/mesoscale regulation of thermochromic properties, and integration with other emerging energy techniques. Furthermore, the challenges and opportunities in thermochromic energy-efficient windows are outlined to promote future scientific investigations and practical applications in building energy conservation.

4.
J Am Chem Soc ; 146(22): 15053-15060, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776531

RESUMO

Electrocatalysis is considered promising in renewable energy conversion and storage, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, a hydrodynamic single-particle electrocatalysis methodology is developed by integrating collision electrochemistry and microfluidics to improve the activity of an electrocatalysis system. As a proof-of-concept, hydrogen evolution reaction (HER) is electrocatalyzed by individual palladium nanoparticles (Pd NPs), with the development of microchannel-based ultramicroelectrodes. The controlled laminar flow enables the precise delivery of Pd NPs to the electrode-electrolyte interface one by one. Compared to the diffusion condition, hydrodynamic collision improves the number of active sites on a given electrode by 2 orders of magnitude. Furthermore, forced convection enables the enhancement of proton mass transport, thereby increasing the electrocatalytic activity of each single Pd NP. It turns out that the improvement in mass transport increases the reaction rate of HER at individual Pd NPs, thus a phase transition without requiring a high overpotential. This study provides new avenues for enhancing electrocatalytic activity by altering operating conditions, beyond material design limitations.

5.
Respir Res ; 25(1): 173, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643126

RESUMO

RATIONALE: Our understanding of airway dysbiosis in chronic obstructive pulmonary disease (COPD) remains incomplete, which may be improved by unraveling the complexity in microbial interactome. OBJECTIVES: To characterize reproducible features of airway bacterial interactome in COPD at clinical stability and during exacerbation, and evaluate their associations with disease phenotypes. METHODS: We performed weighted ensemble-based co-occurrence network analysis of 1742 sputum microbiomes from published and new microbiome datasets, comprising two case-control studies of stable COPD versus healthy control, two studies of COPD stability versus exacerbation, and one study with exacerbation-recovery time series data. RESULTS: Patients with COPD had reproducibly lower degree of negative bacterial interactions, i.e. total number of negative interactions as a proportion of total interactions, in their airway microbiome compared with healthy controls. Evaluation of the Haemophilus interactome showed that the antagonistic interaction networks of this established pathogen rather than its abundance consistently changed in COPD. Interactome dynamic analysis revealed reproducibly reduced antagonistic interactions but not diversity loss during COPD exacerbation, which recovered after treatment. In phenotypic analysis, unsupervised network clustering showed that loss of antagonistic interactions was associated with worse clinical symptoms (dyspnea), poorer lung function, exaggerated neutrophilic inflammation, and higher exacerbation risk. Furthermore, the frequent exacerbators (≥ 2 exacerbations per year) had significantly reduced antagonistic bacterial interactions while exhibiting subtle compositional changes in their airway microbiota. CONCLUSIONS: Bacterial interactome disturbance characterized by reduced antagonistic interactions, rather than change in pathogen abundance or diversity, is a reproducible feature of airway dysbiosis in COPD clinical stability and exacerbations, which suggests that we may target interactome rather than pathogen alone for disease treatment.


Assuntos
Disbiose , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Haemophilus , Escarro/microbiologia , Progressão da Doença
6.
Langmuir ; 40(13): 7106-7113, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498422

RESUMO

Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.

7.
Soft Matter ; 20(8): 1884-1891, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321960

RESUMO

Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.

8.
Analyst ; 149(9): 2629-2636, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563459

RESUMO

Cell migration is known to be a fundamental biological process, playing an essential role in development, homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell contours in each image and track the dynamic behaviors of migrating cells in the field of view. Cells are firstly located and identified via the CA module-based cell detection network, and then associated and tracked via a cell tracking algorithm employing a hybrid feature-matching strategy. This proposed HFM-Tracker exhibits superiorities in cell detection and tracking, achieving 75% in MOTA (Multiple Object Tracking Accuracy) and 65% in IDF1 (ID F1 score). It provides quantitative analysis of the cell morphology and migration features, which could further help in understanding the complicated and diverse cell migration processes.


Assuntos
Algoritmos , Movimento Celular , Rastreamento de Células , Rastreamento de Células/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
9.
BMC Cardiovasc Disord ; 24(1): 203, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594610

RESUMO

BACKGROUND: In patients with hypertrophic cardiomyopathy (HCM), ischemic myocardial fibrosis assessed by late gadolinium enhancement (I-LGE) using cardiovascular magnetic resonance (CMR) have been reported. However, the clinical significance of I-LGE has not been completely understood. We aim to evaluate the I-LGE differ phenotypically from HCM without LGE or nonischemic myocardial fibrosis assessed by late gadolinium enhancement (NI-LGE) in the left ventricle (LV). METHODS: The patients with HCM whom was underwent CMR were enrolled, using cine cardiac magnetic resonance to evaluate LV function and LGE to detect the myocardial fibrosis. Three groups were assorted: 1) HCM without LGE; 2) HCM with LGE involved the subendocardial layer was defined as I-LGE; 3) HCM with LGE not involved the subendocardial layer was defined as NI-LGE. RESULTS: We enrolled 122 patients with HCM in the present study. LGE was detected in 58 of 122 (48%) patients with HCM, and 22 (18%) of patients reported I-LGE. HCM with I-LGE had increased higher left ventricular mass index (LVMI) (P < 0.0001) than HCM with NI-LGE or without LGE. In addition, HCM with I-LGE had a larger LV end- systolic volume (P = 0.045), lower LV ejection fraction (LVEF) (P = 0.026), higher LV myocardial mass (P < 0.001) and thicker LV wall (P < 0.001) more than HCM without LGE alone. The I-LGE were significantly associated with LVEF (OR: 0.961; P = 0.016), LV mass (OR: 1.028; P < 0.001), and maximal end-diastolic LVWT (OR: 1.567; P < 0.001). On multivariate analysis, LVEF (OR: 0.948; P = 0.013) and maximal end-diastolic LVWT (OR: 1.548; P = 0.001) were associated with higher risk for I-LGE compared to HCM without LGE. Noticeably, the maximal end-diastolic LVWT (OR: 1.316; P = 0.011) was the only associated with NI-LGE compared to HCM without LGE. CONCLUSIONS: I-LGE is not uncommon in patients with HCM. HCM with I-LGE was associated with significant LV hypertrophy, extensive LGE and poor LV ejection fraction. We should consider focal ischemic myocardial fibrosis when applying LGE to risk stratification for HCM.


Assuntos
Cardiomiopatia Hipertrófica , Meios de Contraste , Humanos , Gadolínio , Imagem Cinética por Ressonância Magnética , Cardiomiopatia Hipertrófica/diagnóstico , Miocárdio/patologia , Fibrose , Espectroscopia de Ressonância Magnética
10.
J Nat Prod ; 87(4): 893-905, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38417166

RESUMO

The bridged polycyclic sesquiterpenoids derived from sativene, isosativene, and longifolene have unique structures, and many chemical synthesis approaches with at least 10 steps have been reported. However, their biosynthetic pathway remains undescribed. A minimal biosynthetic gene cluster (BGC), named bip, encoding a sesquiterpene cyclase (BipA) and a cytochrome P450 (BipB) is characterized to produce such complex sesquiterpenoids with multiple carbon skeletons based on enzymatic assays, heterologous expression, and precursor experiments. BipA is demonstrated as a versatile cyclase with (-)-sativene as the dominant product and (-)-isosativene and (-)-longifolene as minor ones. BipB is capable of hydroxylating different enantiomeric sesquiterpenes, such as (-)-longifolene and (+)-longifolene, at C-15 and C-14 in turn. The C-15- or both C-15- and C-14-hydroxylated products are then further oxidized by unclustered oxidases, resulting in a structurally diverse array of sesquiterpenoids. Bioinformatic analysis reveals the BipB homologues as a discrete clade of fungal sesquiterpene P450s. These findings elucidate the concise and divergent biosynthesis of such intricate bridged polycyclic sesquiterpenoids, offer valuable biocatalysts for biotransformation, and highlight the distinct biosynthetic strategy employed by nature compared to chemical synthesis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Família Multigênica , Estrutura Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Vias Biossintéticas/genética , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/metabolismo , Estereoisomerismo
11.
Acta Pharmacol Sin ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907048

RESUMO

Adjuvants for vaccines with characteristics of improving adaptive immunity particularly via leverage of antigen presenting cells (APCs) are currently lacking. In a previous work we obtained a new soluble 300 kDa homogeneous ß-glucan named GFPBW1 from the fruit bodies of Granola frondosa. GFPBW1 could activate macrophages by targeting dendritic cell associated C-type lectin 1 (Dectin-1)/Syk/NF-κB signaling to achieve antitumour effects. In this study the adjuvant effects of GFPBW1 were explored with OVA-antigen and B16-OVA tumor model. We showed that GFPBW1 (5, 50, 500 µg/mL) dose-dependently promoted activation and maturation of APCs in vitro by increasing CD80, CD86 and MHC II expression. We immunized female mice with OVA in combination with GFPBW1 (50 or 300 µg) twice with an interval of two weeks. GFPBW1 markedly and dose-dependently increased OVA-specific antibody titers of different subtypes including IgG1, IgG2a, IgG2b and IgG3, suggesting that it could serve as an adjuvant for both Th1 and Th2 type immune responses. Furthermore, GFPBW1 in combination with aluminum significantly increased the titers of OVA-specific IgG2a and IgG2b, but not those of IgG1, suggesting that GFPBW1 could be used as a co-adjuvant of aluminum to compensate for Th1 deficiency. For mice immunized with OVA plus GFPBW1, no obvious pathological injury was observed in either major organs or injection sites, and no abnormalities were noted for any of the hematological parameters. When GFPBW1 served as an adjuvant in the B16-OVA cancer vaccine models, it could accomplish entire tumor suppression with preventive vaccines, and enhance antitumour efficacy with therapeutic vaccines. Differentially expressed genes were found to be enriched in antigen processing process, specifically increased tumor infiltration of DCs, B1 cells and plasma cells in the OVA plus GFPBW1 group, in accordance with its activation and maturation function of APCs. Collectively, this study systematically describes the properties of GFPBW1 as a novel potent and safe adjuvant and highlights its great potential in vaccine development.

12.
Biochem Genet ; 62(2): 798-813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37452172

RESUMO

Immune-modulating therapies exhibit abundant promise compared to traditional treatment for osteosarcoma. We aim to establish an immune-related prognostic signatures in osteosarcoma. We identified the differentially expressed genes in osteosarcoma compared with normal controls using the GEO dataset. The intersection with immune-related genes was considered as differentially expressed immune genes. Potential prognosis-related differentially expressed genes were first analyzed with the multifactor Cox regression and then the step function performed the iteration. The best model was finally chosen as the immunological risk score signature model. And finally, we evaluated the correlation of genes in the prognostic model with immune cells, common immune checkpoints, and immune checkpoint blockade responses. We identified 1527 significantly upregulated and 2407 significantly downregulated genes in osteosarcoma compared to normal samples. In the 258 differentially expressed immune genes, 20 genes with independent prognostic significance were included in the step function. Finally, we constructed a prognostic signature for overall survival based on five immune genes (JAG2, PLXNB1, CMKLR1, NUDT6, and PSMC4) in osteosarcoma. These five genes are closely related to immune infiltration. Osteosarcoma with high JAG2 expression or low CMKLR1 expression may be associated with better immune checkpoint blockade response. JAG2 overexpression or CMKLR1 inhibition induced sensitivity to PD-1 antibody in osteosarcoma cells. We constructed a prognosis prediction signature containing five immune-related genes (JAG2, PLXNB1, CMKLR1, NUDT6, and PSMC4) with a significant prognostic value in osteosarcoma. Significant differences in immune infiltration and immunotherapy responses were identified between groups with different levels of these genes.

13.
Arthroscopy ; 40(6): 1777-1788, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38154531

RESUMO

PURPOSE: To evaluate the equivalence of 3-dimensional (3D) magnetic resonance imaging (MRI) (FRACTURE [Fast field echo Resembling A CT Using Restricted Echo-spacing]) and 3D computed tomography (CT) in quantifying bone loss in patients with shoulder dislocation and measuring morphologic parameters of the shoulder. METHODS: From July 2022 to June 2023, patients with anterior shoulder dislocation who were aged 18 years or older and underwent both MRI and CT within 1 week were included in the study. The MRI protocol included an additional FRACTURE sequence. Three-dimensional reconstructions of MRI (FRACTURE) and CT were completed by 2 independent observers using Mimics software (version 21.0) through simple threshold-based segmentation. For bone defect cases, 2 independent observers evaluated glenoid defect, percentage of glenoid defect, glenoid track, Hill-Sachs interval, and on-track/off-track. For all cases, glenoid width, glenoid height, humeral head-fitting sphere radius, critical shoulder angle, glenoid version, vault depth, and post-processing time were assessed. The paired t test was used to assess the differences between 3D CT and 3D MRI (FRACTURE). Bland-Altman plots were constructed to evaluate the consistency between 3D CT and 3D MRI (FRACTURE). Interobserver and intraobserver agreement was evaluated with the interclass correlation coefficient. The paired χ2 test and Cohen κ statistic were used for binary variables (on-track/off-track). RESULTS: A total of 56 patients (16 with bipolar bone defect, 5 with only Hill-Sachs lesion, and 35 without bone defect) were ultimately enrolled in the study. The measurements of 21 bone defect cases showed no statistically significant differences between 3D CT and 3D MRI: glenoid defect, 4.05 ± 1.44 mm with 3D CT versus 4.16 ± 1.39 mm with 3D MRI (P = .208); percentage of glenoid defect, 16.21% ± 5.95% versus 16.61% ± 5.66% (P = .199); glenoid track, 18.02 ± 2.97 mm versus 18.08 ± 2.98 mm (P = .659); and Hill-Sachs interval, 14.29 ± 1.93 mm versus 14.35 ± 2.07 mm (P = .668). No significant difference was found between 3D CT and 3D MRI in the diagnosis of on-track/off-track (P > .999), and diagnostic agreement was perfect (κ = 1.00, P < .001). There were no statistically significant differences between the 2 examination methods in the measurements of all 56 cases, except that the post-processing time of 3D MRI was significantly longer than that of 3D CT: glenoid height, 34.56 ± 1.98 mm with 3D CT versus 34.67 ± 2.01 mm with 3D MRI (P = .139); glenoid width, 25.32 ± 1.48 mm versus 25.45 ± 1.47 mm (P = .113); humeral head-fitting sphere radius, 22.91 ± 1.70 mm versus 23.00 ± 1.76 mm (P = .211); critical shoulder angle, 33.49° ± 2.55° versus 33.57° ± 2.51° (P = .328); glenoid version, -3.25° ± 2.57° versus -3.18° ± 2.57° (P = .322); vault depth, 37.43 ± 1.68 mm versus 37.58 ± 1.75 mm (P = .164); and post-processing time, 89.66 ± 10.20 seconds versus 360.93 ± 26.76 seconds (P < .001). For all assessments, the Bland-Altman plots showed excellent consistency between the 2 examination methods, and the interclass correlation coefficients revealed excellent interobserver and intraobserver agreement. CONCLUSIONS: Three-dimensional MRI (FRACTURE) is equivalent to 3D CT in quantifying bone loss in patients with shoulder dislocation and measuring shoulder morphologic parameters. LEVEL OF EVIDENCE: Level II, development of diagnostic criteria (consecutive patients with consistently applied reference standard and blinding).


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Luxação do Ombro , Tomografia Computadorizada por Raios X , Humanos , Luxação do Ombro/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Articulação do Ombro/diagnóstico por imagem , Adolescente
14.
Clin Oral Investig ; 28(5): 273, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664277

RESUMO

OBJECTIVE: This study aimed to explore the associations of orofacial two-point discrimination (2-PD) test result with pain symptoms and psychological factors in patients with Temporomandibular Disorders (TMDs). METHODS: 193 patients with TMDs were included in this study. Patients' demographics, pain intensity, and psychological status were recorded. The 2-PDs in the bilateral temporal, zygomatic, mandibular, and temporomandibular joint (TMJ) regions of the patients were measured. Statistical analyses were conducted to observe the associations between variables. RESULTS: For Pain-related TMDs (PT) patients, Monthly Visual Analogue Scale (VAS-M) and Current Analogue Scale (VAS-C) were correlated with TMJ, zygomatic and temporal 2-PDs. Patients with PT tended to have higher TMJ 2-PDs[Right: ß = 1.827 mm, 95%CI(0.107, 3.548), P = 0.038], zygomatic 2-PDs[Right: ß = 1.696 mm, 95%CI(0.344, 3.048), P = 0.014], temporal 2-PDs[Left: ß = 2.138 mm, 95%CI(0.127, 4.149), P = 0.037; Right: ß = 1.893 mm, 95%CI(0.011, 3.775), P = 0.049]. Associations were also observed between VAS-C and TMJ 2-PDs[Left: ß = 0.780, 95%CI(0.190, 1.370), P = 0.01; Right: ß = 0.885, 95%CI(0.406, 1.364), P = 0.001], Zygomatic 2-PDs[Right: ß = 0.555, 95%CI(0.172, 0.938), P = 0.005]; VAS-M and TMJ 2-PDs[Left: ß = 0.812, 95%CI(0.313, 1.311), P = 0.002; Right: ß = 0.567, 95%CI(0.152, 0.983), P = 0.008], zygomatic 2-PDs[Left: ß = 0.405, 95%CI(0.075, 0.735), P = 0.016; Right: ß = 0.545, 95%CI(0.221, 0.870), P = 0.001], and temporal 2-PDs [Left: ß = 0.741, 95%CI(0.258, 1.224), P = 0.003; Right: ß = 0.519, 95%CI(0.063, 0.975), P = 0.026]. CONCLUSION: TMJ, zygomatic, and temporal 2-PDs were significantly associated with PT and pain intensity. Age, gender and psychological factors were not associated with orofacial 2-PDs. PT patients exhibited weaker tactile acuity compared to Non-PT patients. Further discussion on the underlying mechanism is needed. CLINICAL RELEVANCE: Orofacial tactile acuity of TMDs patients was associated with their pain symptoms, which researchers should take account into when performing 2-PD tests for TMDs patients. The 2-PD test can be considered as a potential tool along with the current procedures for the differentiations of PT and Non-PT.


Assuntos
Dor Facial , Medição da Dor , Transtornos da Articulação Temporomandibular , Humanos , Transtornos da Articulação Temporomandibular/fisiopatologia , Transtornos da Articulação Temporomandibular/psicologia , Feminino , Masculino , Adulto , Dor Facial/fisiopatologia , Pessoa de Meia-Idade , Adolescente , Limiar da Dor/fisiologia
15.
Chem Soc Rev ; 52(8): 2596-2616, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36994760

RESUMO

Molecular structure conversion concomitant with mass transfer processes at the electrode-electrolyte interfaces plays a central role in energy electrochemistry. Mass spectrometry, as one of the most intuitive, sensitive techniques, provides the capability to collect transient intermediates and products and uncover reaction mechanisms and kinetics. In situ time-of-flight secondary ion electrochemical mass spectrometry with inherent high mass and spatiotemporal resolution has emerged as a promising strategy for investigating electrochemical processes at the electrode surface. This review illustrates the recent advancements in coupling time-of-flight secondary ion mass spectrometry and electrochemistry to visualize and quantify local dynamic electrochemical processes, identify solvated species distribution, and disclose hidden reaction pathways at the molecular level. Moreover, the key challenges in this field are further discussed to promote new applications and discoveries in operando studying the dynamic electrochemical interfaces of advanced energy systems.

16.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475066

RESUMO

The field of fluorescence sensing, leveraging various supramolecular self-assembled architectures constructed from macrocyclic pillar[n]arenes, has seen significant advancement in recent decades. This review comprehensively discusses, for the first time, the recent innovations in the synthesis and self-assembly of pillar[n]arene-based supramolecular architectures (PSAs) containing metal coordination sites, along with their practical applications and prospects in fluorescence sensing. Integrating hydrophobic and electron-rich cavities of pillar[n]arenes into these supramolecular structures endows the entire system with self-assembly behavior and stimulus responsiveness. Employing the host-guest interaction strategy and complementary coordination forces, PSAs exhibiting both intelligent and controllable properties are successfully constructed. This provides a broad horizon for advancing fluorescence sensors capable of detecting environmental pollutants. This review aims to establish a solid foundation for the future development of fluorescence sensing applications utilizing PSAs. Additionally, current challenges and future perspectives in this field are discussed.

17.
Nano Lett ; 23(24): 11771-11777, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088915

RESUMO

In 1997, the discovery of single molecule-surface enhanced Raman spectroscopy (SM-SERS) rekindled broad interests owing to its ultrahigh enhancement factor up to the 1014-1015 level. However, regretfully, the advantage of SM-SERS with an ultralow detection limit has not yet been fully utilized in commercialized applications. Here, we report a strategy, which we name confined-enhanced Raman spectroscopy, in which the overall Raman properties can be remarkably improved with in situ-formed active nanoshell on the surface of silver or gold nanoparticles. The nanoshell can confine and anchor molecules onto the surface of plasmonic nanoparticles and avoid desorption from hot spots so that the "on and off" blinking effect can be eliminated. It is the first time the single-molecule detection of analytes with super sensitivity, high stability, and reproducibility based on gold nanoparticles has been realized. In addition, this strategy is suitable for SERS detection in diverse molecule systems, including biomedical diagnosis, catalytic reaction, etc.

18.
Angew Chem Int Ed Engl ; : e202404170, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781086

RESUMO

The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficient among crystal facets facilitates Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.

19.
Angew Chem Int Ed Engl ; : e202406677, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825572

RESUMO

The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30 nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.

20.
Angew Chem Int Ed Engl ; 63(17): e202316551, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38411372

RESUMO

Single-entity electrochemistry is a powerful tool that enables the study of electrochemical processes at interfaces and provides insights into the intrinsic chemical and structural heterogeneities of individual entities. Signal processing is a critical aspect of single-entity electrochemical measurements and can be used for data recognition, classification, and interpretation. In this review, we summarize the recent five-year advances in signal processing techniques for single-entity electrochemistry and highlight their importance in obtaining high-quality data and extracting effective features from electrochemical signals, which are generally applicable in single-entity electrochemistry. Moreover, we shed light on electrochemical noise analysis to obtain single-molecule frequency fingerprint spectra that can provide rich information about the ion networks at the interface. By incorporating advanced data analysis tools and artificial intelligence algorithms, single-entity electrochemical measurements would revolutionize the field of single-entity analysis, leading to new fundamental discoveries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA