Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 137-164, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33556282

RESUMO

DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , Enzimas/metabolismo , Complexos Multiproteicos/genética , Animais , Enzimas/genética , Instabilidade Genômica , Humanos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Recombinação V(D)J
2.
Mol Cell ; 77(5): 1080-1091.e8, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862156

RESUMO

Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Instabilidade Genômica , Animais , DNA Ligases/genética , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Modelos Genéticos , Complexos Multiproteicos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Imagem Individual de Molécula , Fatores de Tempo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
3.
Mol Cell ; 75(4): 700-710.e6, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442422

RESUMO

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , DNA de Helmintos/química , Proteínas Nucleares/química , Conformação de Ácido Nucleico , Nucleossomos/química , Multimerização Proteica , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , DNA de Helmintos/metabolismo , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 119(41): e2208875119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191223

RESUMO

Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
5.
Mol Cell ; 61(6): 850-8, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990988

RESUMO

Repair of DNA double-strand breaks (DSBs) is essential for genomic stability. The most common DSB repair mechanism in human cells, non-homologous end joining (NHEJ), rejoins broken DNA ends by direct ligation. It remains unclear how components of the NHEJ machinery assemble a synaptic complex that bridges DNA ends. Here, we use single-molecule imaging in a vertebrate cell-free extract to show that synapsis of DNA ends occurs in at least two stages that are controlled by different NHEJ factors. DNA ends are initially tethered in a long-range complex whose formation requires the Ku70/80 heterodimer and the DNA-dependent protein kinase catalytic subunit. The ends are then closely aligned, which requires XLF, a non-catalytic function of XRCC4-LIG4, and DNA-PK activity. These results reveal a structural transition in the synaptic complex that governs alignment of DNA ends. Our approach provides a means of studying physiological DNA DSB repair at single-molecule resolution.


Assuntos
Pareamento Cromossômico/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Sistema Livre de Células , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Autoantígeno Ku , Imagem Molecular , Ligação Proteica
6.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877095

RESUMO

SecA belongs to the large class of ATPases that use the energy of ATP hydrolysis to perform mechanical work resulting in protein translocation across membranes, protein degradation, and unfolding. SecA translocates polypeptides through the SecY membrane channel during protein secretion in bacteria, but how it achieves directed peptide movement is unclear. Here, we use single-molecule FRET to derive a model that couples ATP hydrolysis-dependent conformational changes of SecA with protein translocation. Upon ATP binding, the two-helix finger of SecA moves toward the SecY channel, pushing a segment of the polypeptide into the channel. The finger retracts during ATP hydrolysis, while the clamp domain of SecA tightens around the polypeptide, preserving progress of translocation. The clamp opens after phosphate release and allows passive sliding of the polypeptide chain through the SecA-SecY complex until the next ATP binding event. This power-stroke mechanism may be used by other ATPases that move polypeptides.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peptídeos/metabolismo , Proteínas SecA/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transporte Proteico , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Proteínas SecA/química
7.
Proc Natl Acad Sci U S A ; 116(51): 25591-25601, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796591

RESUMO

DNA lesions stall the replisome and proper resolution of these obstructions is critical for genome stability. Replisomes can directly replicate past a lesion by error-prone translesion synthesis. Alternatively, replisomes can reprime DNA synthesis downstream of the lesion, creating a single-stranded DNA gap that is repaired primarily in an error-free, homology-directed manner. Here we demonstrate how structural changes within the Escherichia coli replisome determine the resolution pathway of lesion-stalled replisomes. This pathway selection is controlled by a dynamic interaction between the proofreading subunit of the replicative polymerase and the processivity clamp, which sets a kinetic barrier to restrict access of translesion synthesis (TLS) polymerases to the primer/template junction. Failure of TLS polymerases to overcome this barrier leads to repriming, which competes kinetically with TLS. Our results demonstrate that independent of its exonuclease activity, the proofreading subunit of the replisome acts as a gatekeeper and influences replication fidelity during the resolution of lesion-stalled replisomes.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Bacteriano , DNA Polimerase Dirigida por DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
8.
Genes Dev ; 28(11): 1228-38, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24829297

RESUMO

The parABS system is a widely employed mechanism for plasmid partitioning and chromosome segregation in bacteria. ParB binds to parS sites on plasmids and chromosomes and associates with broad regions of adjacent DNA, a phenomenon known as spreading. Although essential for ParB function, the mechanism of spreading remains poorly understood. Using single-molecule approaches, we discovered that Bacillus subtilis ParB (Spo0J) is able to trap DNA loops. Point mutants in Spo0J that disrupt DNA bridging are defective in spreading and recruitment of structural maintenance of chromosomes (SMC) condensin complexes in vivo. DNA bridging helps to explain how a limited number of Spo0J molecules per parS site (~20) can spread over many kilobases and suggests a mechanism by which ParB proteins could facilitate the loading of SMC complexes. We show that DNA bridging is a property of diverse ParB homologs, suggesting broad evolutionary conservation.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , DNA Primase/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Forma do Núcleo Celular/genética , DNA Primase/genética , Mutação Puntual , Ligação Proteica
9.
J Biol Chem ; 295(28): 9542-9550, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32430399

RESUMO

Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with Escherichia coli thioredoxin, the product of the trxA gene. Expression of a gp5 variant in which aspartate residues in the metal-binding site of the polymerase domain were replaced by alanine is highly toxic to E. coli cells. This toxicity depends on the presence of a functional E. coli trxA allele and T7 RNA polymerase-driven expression but is independent of the exonuclease activity of gp5. In vitro, the purified gp5 variant is devoid of any detectable polymerase activity and inhibited DNA synthesis by the replisomes of E. coli and T7 in the presence of thioredoxin by forming a stable complex with DNA that prevents replication. On the other hand, the highly homologous Klenow fragment of DNA polymerase I containing an engineered gp5 thioredoxin-binding domain did not exhibit toxicity. We conclude that gp5 alleles encoding inactive polymerases, in combination with thioredoxin, could be useful as a shutoff mechanism in the design of a bacterial cell-growth system.


Assuntos
Bacteriófago T7 , Replicação do DNA , DNA Viral , DNA Polimerase Dirigida por DNA , Proteínas de Escherichia coli , Escherichia coli , Tiorredoxinas , Bacteriófago T7/enzimologia , Bacteriófago T7/genética , DNA Viral/biossíntese , DNA Viral/química , DNA Viral/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Biophys J ; 116(12): 2367-2377, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31113551

RESUMO

A one-dimensional (1D) search is an essential step in DNA target recognition. Theoretical studies have suggested that the sequence dependence of 1D diffusion can help resolve the competing demands of a fast search and high target affinity, a conflict known as the speed-selectivity paradox. The resolution requires that the diffusion energy landscape is correlated with the underlying specific binding energies. In this work, we report observations of a 1D search by quantum dot-labeled EcoRI. Our data supports the view that proteins search DNA via rotation-coupled sliding over a corrugated energy landscape. We observed that whereas EcoRI primarily slides along DNA at low salt concentrations, at higher concentrations, its diffusion is a combination of sliding and hopping. We also observed long-lived pauses at genomic star sites, which differ by a single nucleotide from the target sequence. To reconcile these observations with prior biochemical and structural data, we propose a model of search in which the protein slides over a sequence-independent energy landscape during fast search but rapidly interconverts with a "hemispecific" binding mode in which a half site is probed. This half site interaction stabilizes the transition to a fully specific mode of binding, which can then lead to target recognition.


Assuntos
Desoxirribonuclease EcoRI/química , Desoxirribonuclease EcoRI/metabolismo , Sequência de Bases , Sítios de Ligação , DNA/genética , DNA/metabolismo , Difusão , Ligação Proteica
11.
Biochemistry ; 58(20): 2509-2518, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30946563

RESUMO

Regulated proteolysis of signaling proteins under mechanical tension enables cells to communicate with their environment in a variety of developmental and physiologic contexts. The role of force in inducing proteolytic sensitivity has been explored using magnetic tweezers at the single-molecule level with bead-tethered assays, but such efforts have been limited by challenges in ensuring that beads not be restrained by multiple tethers. Here, we describe a multiplexed assay for single-molecule proteolysis that overcomes the multiple-tether problem using a flow-extension strategy on a microscope equipped with magnetic tweezers. Particle tracking and computational sorting of flow-induced displacements allow assignment of tethered substrates to singly captured and multiply tethered bins, with the fraction of fully mobile, single-tether substrates depending inversely on the concentration of substrate loaded on the coverslip. Computational exclusion of multiple-tether beads enables robust assessment of on-target proteolysis by the highly specific tobacco etch virus protease and the more promiscuous metalloprotease ADAM17. This method should be generally applicable to a wide range of proteases and readily extensible to robust evaluation of proteolytic sensitivity as a function of applied magnetic force.


Assuntos
Proteína ADAM17/química , Endopeptidases/química , Peptídeos/análise , Proteólise , Imagem Individual de Molécula/métodos , DNA/química , Humanos , Fenômenos Magnéticos , Microfluídica/métodos , Movimento (Física) , Peptídeos/química , Potyvirus/enzimologia , Estudo de Prova de Conceito
12.
Nucleic Acids Res ; 45(12): 7106-7117, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28407103

RESUMO

Most bacteria utilize the highly conserved parABS partitioning system in plasmid and chromosome segregation. This system depends on a DNA-binding protein ParB, which binds specifically to the centromere DNA sequence parS and to adjacent non-specific DNA over multiple kilobases in a phenomenon called spreading. Previous single-molecule experiments in combination with genetic, biochemical and computational studies have argued that ParB spreading requires cooperative interactions between ParB dimers including DNA bridging and possible nearest-neighbor interactions. A recent structure of a ParB homolog co-crystallized with parS revealed that ParB dimers tetramerize to form a higher order nucleoprotein complex. Using this structure as a guide, we systematically ablated a series of proposed intermolecular interactions in the Bacillus subtilis ParB (BsSpo0J) and characterized their effect on spreading using both in vivo and in vitro assays. In particular, we measured DNA compaction mediated by BsSpo0J using a recently developed single-molecule method to simultaneously visualize protein binding on single DNA molecules and changes in DNA conformation without protein labeling. Our results indicate that residues acting as hubs for multiple interactions frequently led to the most severe spreading defects when mutated, and that a network of both cis and trans interactions between ParB dimers is necessary for spreading.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/química , Cromossomos Bacterianos/química , DNA Bacteriano/química , Plasmídeos/química , Motivos de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Centrômero/química , Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
13.
Trends Genet ; 31(3): 164-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25682183

RESUMO

All organisms must dramatically compact their genomes to accommodate DNA within the cell. Bacteria use a set of DNA-binding proteins with low sequence specificity called nucleoid-associated proteins (NAPs) to assist in chromosome condensation and organization. By bending or bridging DNA, NAPs also facilitate chromosome segregation and regulate gene expression. Over the past decade, emerging single-molecule and chromosome conformation capture techniques have investigated the molecular mechanisms by which NAPs remodel and organize the bacterial chromosome. In this review we describe how such approaches reveal the biochemical mechanisms of three NAPs that are believed to facilitate DNA bridging: histone-like nucleoid structuring protein (H-NS), ParB, and structural maintenance of chromosomes (SMC). These three proteins form qualitatively different DNA bridges, leading to varied effects on transcription and chromosome segregation.


Assuntos
Proteínas de Bactérias/metabolismo , Segregação de Cromossomos/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Conformação de Ácido Nucleico
14.
Nucleic Acids Res ; 44(13): e118, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27185891

RESUMO

Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replication product is tagged with a unique nucleotide sequence before amplification. This allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mapeamento Cromossômico/métodos , Humanos , Análise de Sequência de DNA
15.
Nucleic Acids Res ; 44(4): 1681-90, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26657641

RESUMO

Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, ß. Single-molecule experiments reveal that the interactions of Pol II and Pol III with ß allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a ß-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork.


Assuntos
DNA Polimerase III/genética , DNA Polimerase II/genética , DNA Polimerase beta/genética , DNA/biossíntese , DNA/genética , Dano ao DNA/genética , DNA Polimerase II/química , DNA Polimerase III/química , DNA Polimerase beta/química , Reparo do DNA/genética , Replicação do DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Estrutura Terciária de Proteína
16.
PLoS Genet ; 11(9): e1005507, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26352807

RESUMO

Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the ß sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the ß clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , Reparo do DNA , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Seleção Genética , Domínio Catalítico , DNA Polimerase beta/genética , Replicação do DNA , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Ligação Proteica
17.
Proc Natl Acad Sci U S A ; 111(24): 8809-14, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24927534

RESUMO

The ParABS system mediates chromosome segregation and plasmid partitioning in many bacteria. As part of the partitioning mechanism, ParB proteins form a nucleoprotein complex at parS sites. The biophysical basis underlying ParB-DNA complex formation and localization remains elusive. Specifically, it is unclear whether ParB spreads in 1D along DNA or assembles into a 3D protein-DNA complex. We show that a combination of 1D spreading bonds and a single 3D bridging bond between ParB proteins constitutes a minimal model for a condensed ParB-DNA complex. This model implies a scaling behavior for ParB-mediated silencing of parS-flanking genes, which we confirm to be satisfied by experimental data from P1 plasmids. Furthermore, this model is consistent with experiments on the effects of DNA roadblocks on ParB localization. Finally, we show experimentally that a single parS site is necessary and sufficient for ParB-DNA complex formation in vivo. Together with our model, this suggests that ParB binding to parS triggers a conformational switch in ParB that overcomes a nucleation barrier. Conceptually, the combination of spreading and bridging bonds in our model provides a surface tension ensuring the condensation of the ParB-DNA complex, with analogies to liquid-like compartments such as nucleoli in eukaryotes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Cromossomos Bacterianos/química , DNA Bacteriano/química , Algoritmos , Fenômenos Fisiológicos Bacterianos , Sítios de Ligação , Proteínas de Ligação a DNA/química , Inativação Gênica , Genômica , Proteínas de Fluorescência Verde/química , Cinética , Método de Monte Carlo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Software , Temperatura
18.
Proc Natl Acad Sci U S A ; 111(21): 7647-52, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24825884

RESUMO

Translesion synthesis (TLS) by Y-family DNA polymerases alleviates replication stalling at DNA damage. Ring-shaped processivity clamps play a critical but ill-defined role in mediating exchange between Y-family and replicative polymerases during TLS. By reconstituting TLS at the single-molecule level, we show that the Escherichia coli ß clamp can simultaneously bind the replicative polymerase (Pol) III and the conserved Y-family Pol IV, enabling exchange of the two polymerases and rapid bypass of a Pol IV cognate lesion. Furthermore, we find that a secondary contact between Pol IV and ß limits Pol IV synthesis under normal conditions but facilitates Pol III displacement from the primer terminus following Pol IV induction during the SOS DNA damage response. These results support a role for secondary polymerase clamp interactions in regulating exchange and establishing a polymerase hierarchy.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase beta/metabolismo , DNA/metabolismo , Modelos Genéticos , Resposta SOS em Genética/fisiologia , Escherichia coli , Técnicas Analíticas Microfluídicas , Ligação Proteica , Estatísticas não Paramétricas
19.
Anal Biochem ; 495: 3-5, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655389

RESUMO

Sequence-specific DNA cleavage is a key step in a number of genomic transactions. Here, we report a single-molecule technique that allows the simultaneous measurement of hundreds of DNAs, thereby collecting significant statistics in a single experiment. Microbeads are tethered with single DNA molecules in a microfluidic channel. After the DNA cleavage reaction is initiated, the time of cleavage of each DNA is recorded using video microscopy. We demonstrate the utility of our method by measuring the cleavage kinetics of NdeI, a type II restriction endonuclease.


Assuntos
Técnicas de Química Analítica/métodos , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Clivagem do DNA , Cinética , Técnicas Analíticas Microfluídicas , Microscopia de Vídeo
20.
Biophys J ; 108(10): 2532-2540, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25992731

RESUMO

Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-µm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length.


Assuntos
DNA Bacteriano/química , Elasticidade , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA