Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(5): e2212755120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693100

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a disease that claims ~1.6 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. Therefore, development of new anti-TB drugs remains one of the highest public health priorities. Mtb has evolved a complex cell envelope that represents a formidable barrier to antibiotics. The Mtb cell envelop consists of four distinct layers enriched for Mtb specific lipids and glycans. Although the outer membrane, comprised of mycolic acid esters, has been extensively studied, less is known about the plasma membrane, which also plays a critical role in impacting antibiotic efficacy. The Mtb plasma membrane has a unique lipid composition, with mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs) comprising more than 50% of the lipids. However, the role of PIMs in the structure and function of the membrane remains elusive. Here, we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to shape the biophysical properties of mycobacterial plasma membranes. We assess both symmetric and asymmetric assemblies of the Mtb plasma membrane and compare this with residue distributions of Mtb integral membrane protein structures. To further validate the model, we tested known anti-TB drugs and demonstrated that our models agree with experimental results. Thus, our work sheds new light on the organization of the mycobacterial plasma membrane. This paves the way for future studies on antibiotic development and understanding Mtb membrane protein function.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Fosfatidilinositóis/metabolismo , Mycobacterium tuberculosis/metabolismo , Membrana Celular/metabolismo , Tuberculose/microbiologia , Antituberculosos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
3.
J Am Chem Soc ; 146(12): 8164-8178, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38476076

RESUMO

Side-chain motions play an important role in understanding protein structure, dynamics, protein-protein, and protein-ligand interactions. However, our understanding of protein side-chain dynamics is currently limited by the lack of analytical tools. Here, we present a novel analytical framework employing experimental nuclear magnetic resonance (NMR) relaxation measurements at atomic resolution combined with molecular dynamics (MD) simulation to characterize with a high level of detail the methyl side-chain dynamics in insoluble protein assemblies, using amyloid fibrils formed by the prion HET-s. We use MD simulation to interpret experimental results, where rotameric hops, including methyl group rotation and χ1/χ2 rotations, cannot be completely described with a single correlation time but rather sample a broad distribution of correlation times, resulting from continuously changing local structure in the fibril. Backbone motion similarly samples a broad range of correlation times, from ∼100 ps to µs, although resulting from mostly different dynamic processes; nonetheless, we find that the backbone is not fully decoupled from the side-chain motion, where changes in side-chain dynamics influence backbone motion and vice versa. While the complexity of side-chain motion in protein assemblies makes it very challenging to obtain perfect agreement between experiment and simulation, our analytical framework improves the interpretation of experimental dynamics measurements for complex protein assemblies.


Assuntos
Simulação de Dinâmica Molecular , Príons , Espectroscopia de Ressonância Magnética/métodos , Amiloide , Ressonância Magnética Nuclear Biomolecular
4.
J Am Chem Soc ; 146(18): 12702-12711, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683963

RESUMO

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.


Assuntos
alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Doença de Parkinson/metabolismo , Motivos de Aminoácidos
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443172

RESUMO

Neurodegenerative disorders are frequently associated with ß-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical ß-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.


Assuntos
Amiloide/química , Amiloide/metabolismo , Príons/metabolismo , Sequência de Aminoácidos/genética , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Sequência Conservada/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Podospora/genética , Agregados Proteicos/fisiologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
6.
Biophys J ; 122(11): 2192-2202, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36582138

RESUMO

Remorins are a family of multigenic plasma membrane phosphoproteins involved in biotic and abiotic plant interaction mechanisms, partnering in molecular signaling cascades. Signaling activity of remorins depends on their phosphorylation states and subsequent clustering into nanosized membrane domains. The presence of a coiled-coil domain and a C-terminal domain is crucial to anchor remorins to negatively charged membrane domains; however, the exact role of the N-terminal intrinsically disordered domain (IDD) on protein clustering and lipid interactions is largely unknown. Here, we combine chemical biology and imaging approaches to study the partitioning of group 1 remorin into anionic model membranes mimicking the inner leaflet of the plant plasma membrane. Using reconstituted membranes containing a mix of saturated and unsaturated phosphatidylcholine, phosphatidylinositol phosphates, and sterol, we investigate the clustering of remorins to the membrane and monitor the formation of nanosized membrane domains. REM1.3 promoted membrane nanodomain organization on the exposed external leaflet of both spherical lipid vesicles and flat supported lipid bilayers. Our results reveal that REM1.3 drives a mechanism allowing lipid reorganization, leading to the formation of remorin-enriched nanodomains. Phosphorylation of the N-terminal IDD by the calcium protein kinase CPK3 influences this clustering and can lead to the formation of smaller and more disperse domains. Our work reveals the phosphate-dependent involvement of the N-terminal IDD in the remorin-membrane interaction process by driving structural rearrangements at lipid-water interfaces.


Assuntos
Proteínas de Transporte , Proteínas de Plantas , Proteínas de Transporte/metabolismo , Proteínas de Plantas/química , Membrana Celular/metabolismo , Plantas/metabolismo , Bicamadas Lipídicas/metabolismo
7.
J Am Chem Soc ; 145(5): 2733-2738, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705935

RESUMO

We have discovered a protein with an amino acid composition exceptionally rich in glycine and cysteine residues in the giant virus mimivirus. This small 6 kDa protein is among the most abundant proteins in the icosahedral 0.75 µm viral particles; it has no predicted function but is probably essential for infection. The aerobically purified red-brownish protein overproduced inEscherichia coli contained both iron and inorganic sulfide. UV/vis, EPR, and Mössbauer studies revealed that the viral protein, coined GciS, accommodated two distinct Fe-S clusters: a diamagnetic S = 0 [2Fe-2S]2+ cluster and a paramagnetic S = 5/2 linear [3Fe-4S]1+ cluster, a geometry rarely stabilized in native proteins. Orthologs of mimivirus GciS were identified within all clades of Megavirinae, a Mimiviridae subfamily infecting Acanthamoeba, including the distantly related tupanviruses, and displayed the same spectroscopic features. Thus, these glycine/cysteine-rich proteins form a new family of viral Fe-S proteins sharing unique Fe-S cluster binding properties.


Assuntos
Vírus Gigantes , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Vírus Gigantes/metabolismo , Cisteína/química , Glicina , Análise Espectral , Espectroscopia de Ressonância de Spin Eletrônica
8.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559330

RESUMO

While Rho GTPases are indispensible regulators of cellular polarity, the mechanisms underlying their anisotropic activation at membranes have been elusive. Using the budding yeast Cdc42 GTPase module, which includes a guanine nucleotide exchange factor (GEF) Cdc24 and the scaffold Bem1, we find that avidity generated via multivalent anionic lipid interactions is a critical mechanistic constituent of polarity establishment. We identify basic cluster (BC) motifs in Bem1 that drive the interaction of the scaffold-GEF complex with anionic lipids at the cell pole. This interaction appears to influence lipid acyl chain ordering, thus regulating membrane rigidity and feedback between Cdc42 and the membrane environment. Sequential mutation of the Bem1 BC motifs, PX domain, and the PH domain of Cdc24 lead to a progressive loss of cellular polarity stemming from defective Cdc42 nanoclustering on the plasma membrane and perturbed signaling. Our work demonstrates the importance of avidity via multivalent anionic lipid interactions in the spatial control of GTPase activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
J Biomol NMR ; 77(3): 121-130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289306

RESUMO

Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-ß arrangement rich in ß-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.


Assuntos
Amiloide , Imageamento por Ressonância Magnética , Amiloide/química , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Amiloidogênicas
10.
Anal Chem ; 95(7): 3596-3605, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36749686

RESUMO

Understanding the membrane dynamics of complex systems is essential to follow their function. As molecules in membranes can be in a rigid or mobile state depending on external (temperature, pressure) or internal (pH, domains, etc.) conditions, we propose an in-depth examination of NMR methods to filter highly mobile molecular parts from others that are in more restricted environments. We have thus developed a quantitative magic-angle spinning (MAS) 13C NMR approach coupled with cross-polarization (CP) and/or Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) on rigid and fluid unlabeled model membranes. We demonstrate that INEPT can detect only very mobile lipid headgroups in gel (solid-ordered) phases; the remaining rigid parts are only detected with CP. A direct correlation is established between the normalized line intensity as obtained by CP and the C-H (C-D) order parameters measured by wide-line 2H NMR or extracted from molecular dynamics: ICP/IDPeq ≈ 5|SCH|, indicating that when the order is greater than 0.2-0.3 (maximum value of 0.5 for chain CH2), only rigid parts can be filtered and detected using CP techniques. In very fluid (liquid-disordered) membranes, where there are many more active motions, both INEPT and CP detect resonances, with, however, a clear propensity of each technique to detect mobile and restricted molecular parts, respectively. Interestingly, the 13C NMR chemical shift of lipid hydrocarbon chains can be used to monitor order-disorder phase transitions and calculate the fraction of chain defects (rotamers) and the part of the transition enthalpy due to bond rotations (6-7 kJ·mol-1 for dimyristolphosphatidylcholine, DMPC). Cholesterol-containing membranes (liquid-ordered phases) can be dynamically contrasted as the rigid-body sterol is mainly detected by the CP technique, with a contact time of 1 ms, and the phospholipid by INEPT. Our work opens up a straightforward, robust, and cost-effective route for the determination of membrane dynamics by taking advantage of well-resolved conventional 13C NMR experiments without the need of isotopic labeling.

11.
Langmuir ; 39(8): 3072-3082, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36793207

RESUMO

It has been shown that the use of conformationally pH-switchable lipids can drastically enhance the cytosolic drug delivery of lipid vesicles. Understanding the process by which the pH-switchable lipids disturb the lipid assembly of nanoparticles and trigger the cargo release is crucial to optimize the rational design of pH-switchable lipids. Here, we gather morphological observations (FF-SEM, Cryo-TEM, AFM, confocal microscopy), physicochemical characterization (DLS, ELS), as well as phase behavior studies (DSC, 2H NMR, Langmuir isotherm, and MAS NMR) to propose a mechanism of pH-triggered membrane destabilization. We demonstrate that the switchable lipids are homogeneously incorporated with other co-lipids (DSPC, cholesterol, and DSPE-PEG2000) and promote a liquid-ordered phase insensitive to temperature variation. Upon acidification, the protonation of the switchable lipids triggers a conformational switch altering the self-assembly properties of lipid nanoparticles. These modifications do not lead to a phase separation of the lipid membrane; however, they cause fluctuations and local defects, which result in morphological changes of the lipid vesicles. These changes are proposed to affect the permeability of vesicle membrane, triggering the release of the cargo encapsulated in the lipid vesicles (LVs). Our results confirm that pH-triggered release does not require major morphological changes, but can result from small defects affecting the lipid membrane permeability.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos , Lipídeos/química , Fenômenos Químicos , Conformação Molecular , Permeabilidade
12.
Chem Rev ; 121(4): 2545-2647, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33543942

RESUMO

Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.


Assuntos
Amiloide/química , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Doenças Neurodegenerativas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas , Deficiências na Proteostase/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
13.
Angew Chem Int Ed Engl ; 62(19): e202219314, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738230

RESUMO

Aromatic side chains are important reporters of the plasticity of proteins, and often form important contacts in protein-protein interactions. We studied aromatic residues in the two structurally homologous cross-ß amyloid fibrils HET-s, and HELLF by employing a specific isotope-labeling approach and magic-angle-spinning NMR. The dynamic behavior of the aromatic residues Phe and Tyr indicates that the hydrophobic amyloid core is rigid, without any sign of "breathing motions" over hundreds of milliseconds at least. Aromatic residues exposed at the fibril surface have a rigid ring axis but undergo ring flips on a variety of time scales from nanoseconds to microseconds. Our approach provides direct insight into hydrophobic-core motions, enabling a better evaluation of the conformational heterogeneity generated from an NMR structural ensemble of such amyloid cross-ß architecture.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Ressonância Magnética Nuclear Biomolecular/métodos , Amiloide/química , Espectroscopia de Ressonância Magnética , Conformação Proteica , Peptídeos beta-Amiloides/metabolismo
14.
PLoS Biol ; 17(7): e3000351, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260457

RESUMO

Type III protein-secretion machines are essential for the interactions of many pathogenic or symbiotic bacterial species with their respective eukaryotic hosts. The core component of these machines is the injectisome, a multiprotein complex that mediates the selection of substrates, their passage through the bacterial envelope, and ultimately their delivery into eukaryotic target cells. The injectisome is composed of a large cytoplasmic complex or sorting platform, a multiring base embedded in the bacterial envelope, and a needle-like filament that protrudes several nanometers from the bacterial surface and is capped at its distal end by the tip complex. A characteristic feature of these machines is that their activity is stimulated by contact with target host cells. The sensing of target cells, thought to be mediated by the distal tip of the needle filament, generates an activating signal that must be transduced to the secretion machine by the needle filament. Here, through a multidisciplinary approach, including solid-state NMR (SSNMR) and cryo electron microscopy (cryo-EM) analyses, we have identified critical residues of the needle filament protein of a Salmonella Typhimurium type III secretion system that are involved in the regulation of the activity of the secretion machine. We found that mutations in the needle filament protein result in various specific phenotypes associated with different steps in the type III secretion process. More specifically, these studies reveal an important role for a polymorphic helix of the needle filament protein and the residues that line the lumen of its central channel in the control of type III secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Complexos Multiproteicos/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/genética , Microscopia Crioeletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Mutação , Conformação Proteica , Transporte Proteico/genética , Salmonella typhimurium/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/ultraestrutura
15.
J Biomol NMR ; 75(10-12): 417-427, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34813018

RESUMO

Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.


Assuntos
Proteínas , Prótons , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular
16.
Environ Microbiol ; 23(10): 6104-6121, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288352

RESUMO

Fungi are considered to cause grapevine trunk diseases such as esca that result in wood degradation. For instance, the basidiomycete Fomitiporia mediterranea (Fmed) is overabundant in white rot, a key type of wood-necrosis associated with esca. However, many bacteria colonize the grapevine wood too, including the white rot. In this study, we hypothesized that bacteria colonizing grapevine wood interact, possibly synergistically, with Fmed and enhance the fungal ability to degrade wood. We isolated 237 bacterial strains from esca-affected grapevine wood. Most of them belonged to the families Xanthomonadaceae and Pseudomonadaceae. Some bacterial strains that degrade grapevine-wood components such as cellulose and hemicellulose did not inhibit Fmed growth in vitro. We proved that the fungal ability to degrade wood can be strongly influenced by bacteria inhabiting the wood. This was shown with a cellulolytic and xylanolytic strain of the Paenibacillus genus, which displays synergistic interaction with Fmed by enhancing the degradation of wood structures. Genome analysis of this Paenibacillus strain revealed several gene clusters such as those involved in the expression of carbohydrate-active enzymes, xylose utilization and vitamin metabolism. In addition, certain other genetic characteristics of the strain allow it to thrive as an endophyte in grapevine and influence the wood degradation by Fmed. This suggests that there might exist a synergistic interaction between the fungus Fmed and the bacterial strain mentioned above, enhancing grapevine wood degradation. Further step would be to point out its occurrence in mature grapevines to promote esca disease development.


Assuntos
Basidiomycota , Vitis , Bactérias/genética , Humanos , Doenças das Plantas/microbiologia , Vitis/microbiologia , Madeira/microbiologia
17.
Curr Top Microbiol Immunol ; 427: 109-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31974760

RESUMO

Among the Gram-negative bacterial secretion systems, type III secretion systems (T3SS) possess a unique extracellular molecular apparatus called the needle. This macromolecular protein assembly is a nanometre-size filament formed by the helical arrangement of hundreds of copies of a single, small protein, which is highly conserved between T3SSs from animal to plant bacterial pathogens. The needle filament forms a hollow tube with a channel ~20 Å in diameter that serves as a conduit for proteins secreted into the targeted host cell. In the past ten years, technical breakthroughs in biophysical techniques such as cryo-electron microscopy (cryo-EM) and solid-state NMR (SSNMR) spectroscopy have uncovered atomic resolution details about the T3SS needle assembly. Several high-resolution structures of Salmonella typhimurium and Shigella flexneri T3SS needles have been reported demonstrating a common structural fold. These structural models have been used to explain the active role of the needle in transmitting the host-cell contact signal from the tip to the base of the T3SS through conformational changes as well as during the injection of effector proteins. In this chapter, we summarize the current knowledge about the structure and the role of the T3SS needle during T3SS assembly and effector secretion.


Assuntos
Sistemas de Secreção Tipo III/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Ressonância Magnética Nuclear Biomolecular , Salmonella typhimurium/química , Shigella flexneri/química , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/ultraestrutura
18.
Anal Chem ; 92(10): 6858-6868, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32324380

RESUMO

The human nuclear membrane is composed of a double bilayer, the inner membrane being linked to the protein lamina network and the outer nuclear membrane continuous with the endoplasmic reticulum. Nuclear membranes can form large invaginations inside the nucleus; their specific roles still remain unknown. Although much of the protein identification has been determined, their lipid composition remains largely undetermined. In order to understand the mechanical and dynamic properties of nuclear membranes we investigated their lipid composition by two quantitative methods, namely, 31P and 1H multidimensional NMR and mass spectrometry, using internal standards. We also developed a nondetergent nuclei extraction protocol allowing to produce milligram quantities of nuclear membrane lipids. We found that the nuclear membrane lipid extract is composed of a complex mixture of phospholipids with different phosphatidylcholine species present in large amounts. Negatively charged lipids, with elevated amounts of phosphatidylinositol (PI), were also present. Mass spectrometry confirmed the phospholipid composition and provided further information on acyl-chain length and unsaturation. Lipid chain lengths ranged between 30 and 38 carbon atoms (two chains summed up) with a high proportion of 34 carbon atom length for most species. PI lipids have high amounts of chain lengths with 36-38 carbons. Independent of the chain length unsaturations were highly elevated with one to two double bonds per lipid species.


Assuntos
Núcleo Celular/química , Lipídeos de Membrana/análise , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
19.
FASEB J ; 33(11): 12146-12163, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31370706

RESUMO

The formation of biofilms provides structural and adaptive bacterial response to the environment. In Bacillus species, the biofilm extracellular matrix is composed of exopolysaccharides, hydrophobins, and several functional amyloid proteins. We report, using multiscale approaches such as solid-state NMR (SSNMR), electron microscopy, X-ray diffraction, dynamic light scattering, attenuated total reflection Fourier transform infrared (FTIR), and immune-gold labeling, the molecular architecture of B. subtilis and pathogenic B. cereus functional amyloids. SSNMR data reveal that the major amyloid component TasA in its fibrillar amyloid form contain ß-sheet and α-helical secondary structure, suggesting a nontypical amyloid architecture in B. subtilis. Proteinase K digestion experiments indicate the amyloid moiety is ∼100 aa long, and subsequent SSNMR and FTIR signatures for B. subtilis and B. cereus TasA filaments highlight a conserved amyloid fold, albeit with substantial differences in structural polymorphism and secondary structure composition. Structural analysis and coassembly data on the accessory protein TapA in B. subtilis and its counterpart camelysin in B. cereus reveal a catalyzing effect between the functional amyloid proteins and a common structural architecture, suggesting a coassembly in the context of biofilm formation. Our findings highlight nontypical amyloid behavior of these bacterial functional amyloids, underlining structural variations between biofilms even in closely related bacterial species.-El Mammeri, N., Hierrezuelo, J., Tolchard, J., Cámara-Almirón, J., Caro-Astorga, J., Álvarez-Mena, A., Dutour, A., Berbon, M., Shenoy, J., Morvan, E., Grélard, A., Kauffmann, B., Lecomte, S., de Vicente, A., Habenstein, B., Romero, D., Loquet, A. Molecular architecture of bacterial amyloids in Bacillus biofilms.


Assuntos
Proteínas Amiloidogênicas/química , Bacillus/fisiologia , Proteínas de Bactérias/química , Biofilmes , Espectroscopia de Ressonância Magnética , Metaloproteases/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Struct Biol ; 206(1): 12-19, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481850

RESUMO

REMORINs are nanodomain-organized proteins located in the plasma membrane and involved in cellular responses in plants. The dynamic assembly of the membrane nanodomains represents an essential tool of the versatile membrane barriers to control and modulate cellular functions. Nevertheless, the assembly mechanisms and protein organization strategies of nanodomains are poorly understood and many structural aspects are difficult to visualize. Using an ensemble of biophysical approaches, including solid-state nuclear magnetic resonance, cryo-electron microscopy and in vivo confocal imaging, we provide first insights on the role and the structural mechanisms of REMORIN trimerization. Our results suggest that the formation of REMORIN coiled-coil trimers is essential for membrane recruitment and promotes REMORIN assembly in vitro into long filaments by trimer-trimer interactions that might participate in nanoclustering into membrane domains in vivo.


Assuntos
Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Proteínas de Plantas/química , Multimerização Proteica , Proteínas Recombinantes/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Conformação Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA