Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 163(1): 230-45, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26365490

RESUMO

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome.


Assuntos
Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/genética , Provírus/genética , Animais , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Células-Tronco de Carcinoma Embrionário/virologia , Epigênese Genética , Camundongos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
2.
Nat Rev Genet ; 23(3): 137-153, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34608297

RESUMO

DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.


Assuntos
Cromatina/metabolismo , Metilação de DNA/genética , Doença/genética , Crescimento e Desenvolvimento/genética , Animais , Montagem e Desmontagem da Cromatina/fisiologia , Histonas/metabolismo , Humanos , Camundongos , Processamento de Proteína Pós-Traducional
3.
Mol Cell ; 62(5): 766-76, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259207

RESUMO

The life cycle of endogenous retroviruses (ERVs), also called long terminal repeat (LTR) retrotransposons, begins with transcription by RNA polymerase II followed by reverse transcription and re-integration into the host genome. While most ERVs are relics of ancient integration events, "young" proviruses competent for retrotransposition-found in many mammals, but not humans-represent an ongoing threat to host fitness. As a consequence, several restriction pathways have evolved to suppress their activity at both transcriptional and post-transcriptional stages of the viral life cycle. Nevertheless, accumulating evidence has revealed that LTR sequences derived from distantly related ERVs have been exapted as regulatory sequences for many host genes in a wide range of cell types throughout mammalian evolution. Here, we focus on emerging themes from recent studies cataloging the diversity of ERV LTRs acting as important transcriptional regulatory elements in mammals and explore the molecular features that likely account for LTR exaptation in developmental and tissue-specific gene regulation.


Assuntos
DNA Viral/genética , Retrovirus Endógenos/genética , Regulação Viral da Expressão Gênica , Sequências Repetidas Terminais , Transcrição Gênica , Replicação Viral , Animais , Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA Viral/biossíntese , DNA Viral/química , Retrovirus Endógenos/crescimento & desenvolvimento , Retrovirus Endógenos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , DNA Polimerase Dirigida por RNA/metabolismo
4.
Genes Dev ; 28(18): 2041-55, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25228647

RESUMO

Transcription of endogenous retroviruses (ERVs) is inhibited by de novo DNA methylation during gametogenesis, a process initiated after birth in oocytes and at approximately embryonic day 15.5 (E15.5) in prospermatogonia. Earlier in germline development, the genome, including most retrotransposons, is progressively demethylated. Young ERVK and ERV1 elements, however, retain intermediate methylation levels. As DNA methylation reaches a low point in E13.5 primordial germ cells (PGCs) of both sexes, we determined whether retrotransposons are marked by H3K9me3 and H3K27me3 using a recently developed low-input ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) method. Although these repressive histone modifications are found predominantly on distinct genomic regions in E13.5 PGCs, they concurrently mark partially methylated long terminal repeats (LTRs) and LINE1 elements. Germline-specific conditional knockout of the H3K9 methyltransferase SETDB1 yields a decrease of both marks and DNA methylation at H3K9me3-enriched retrotransposon families. Strikingly, Setdb1 knockout E13.5 PGCs show concomitant derepression of many marked ERVs, including intracisternal A particle (IAP), ETn, and ERVK10C elements, and ERV-proximal genes, a subset in a sex-dependent manner. Furthermore, Setdb1 deficiency is associated with a reduced number of male E13.5 PGCs and postnatal hypogonadism in both sexes. Taken together, these observations reveal that SETDB1 is an essential guardian against proviral expression prior to the onset of de novo DNA methylation in the germline.


Assuntos
Metilação de DNA , Retrovirus Endógenos/metabolismo , Células Germinativas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Imunoprecipitação da Cromatina , Retrovirus Endógenos/genética , Feminino , Gametogênese/genética , Deleção de Genes , Técnicas de Inativação de Genes , Inativação Gênica , Células Germinativas/virologia , Histona-Lisina N-Metiltransferase/genética , Masculino , Camundongos , Transcrição Gênica , Ativação Viral/genética
5.
Genome Res ; 28(1): 37-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229671

RESUMO

Phosphorylation of histone H3 at serine 10 (H3S10ph) by Aurora kinases plays an important role in mitosis; however, H3S10ph also marks regulatory regions of inducible genes in interphase mammalian cells, implicating mitosis-independent functions. Using the fluorescent ubiquitin-mediated cell cycle indicator (FUCCI), we found that 30% of the genome in interphase mouse embryonic stem cells (ESCs) is marked with H3S10ph. H3S10ph broadly demarcates gene-rich regions in G1 and is positively correlated with domains of early DNA replication timing (RT) but negatively correlated with H3K9me2 and lamin-associated domains (LADs). Consistent with mitosis-independent kinase activity, this pattern was preserved in ESCs treated with Hesperadin, a potent inhibitor of Aurora B/C kinases. Disruption of H3S10ph by expression of nonphosphorylatable H3.3S10A results in ectopic spreading of H3K9me2 into adjacent euchromatic regions, mimicking the phenotype observed in Drosophila JIL-1 kinase mutants. Conversely, interphase H3S10ph domains expand in Ehmt1 (also known as Glp) null ESCs, revealing that H3S10ph deposition is restricted by H3K9me2. Strikingly, spreading of H3S10ph at RT transition regions (TTRs) is accompanied by aberrant transcription initiation of genes co-oriented with the replication fork in Ehmt1-/- and Ehmt2-/- ESCs, indicating that establishment of repressive chromatin on the leading strand following DNA synthesis may depend upon these lysine methyltransferases. H3S10ph is also anti-correlated with H3K9me2 in interphase murine embryonic fibroblasts (MEFs) and is restricted to intragenic regions of actively transcribing genes by EHMT2. Taken together, these observations reveal that H3S10ph may play a general role in restricting the spreading of repressive chromatin in interphase mammalian cells.


Assuntos
Cromatina/metabolismo , Replicação do DNA/fisiologia , Fibroblastos/metabolismo , Histonas/metabolismo , Interfase/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Cromatina/genética , Drosophila melanogaster , Fibroblastos/citologia , Histonas/genética , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia
6.
Nature ; 516(7531): 405-9, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25317556

RESUMO

Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily, although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged, and are associated with elevated transcription of HERVH, a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors, including LBP9, recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts, including pluripotency-modulating long non-coding RNAs. Disruption of LBP9, HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs, and establish novel primate-specific transcriptional circuitry regulating pluripotency.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Retrovirus Endógenos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Cultivadas , Elementos de DNA Transponíveis , Retrovirus Endógenos/genética , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo
8.
Nature ; 500(7461): 222-6, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23812591

RESUMO

DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germ line, and may be mediated by Tet (ten eleven translocation) enzymes, which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet enzymes have been studied extensively in mouse embryonic stem (ES) cells, which are generally cultured in the absence of vitamin C, a potential cofactor for Fe(II) 2-oxoglutarate dioxygenase enzymes such as Tet enzymes. Here we report that addition of vitamin C to mouse ES cells promotes Tet activity, leading to a rapid and global increase in 5hmC. This is followed by DNA demethylation of many gene promoters and upregulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site of genes affected by vitamin C treatment. Importantly, vitamin C, but not other antioxidants, enhances the activity of recombinant Tet1 in a biochemical assay, and the vitamin-C-induced changes in 5hmC and 5mC are entirely suppressed in Tet1 and Tet2 double knockout ES cells. Vitamin C has a stronger effect on regions that gain methylation in cultured ES cells compared to blastocysts, and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A particle retroelements, which are resistant to demethylation in the early embryo, are resistant to vitamin-C-induced DNA demethylation. Collectively, the results of this study establish vitamin C as a direct regulator of Tet activity and DNA methylation fidelity in ES cells.


Assuntos
Ácido Ascórbico/farmacologia , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Antioxidantes/farmacologia , Blastocisto/metabolismo , Linhagem Celular , Meios de Cultura/química , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Inativação de Genes , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
PLoS Genet ; 12(10): e1006390, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27741228

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1004933.].

10.
BMC Genomics ; 19(1): 463, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907088

RESUMO

BACKGROUND: Allele-specific transcriptional regulation, including of imprinted genes, is essential for normal mammalian development. While the regulatory regions controlling imprinted genes are associated with DNA methylation (DNAme) and specific histone modifications, the interplay between transcription and these epigenetic marks at allelic resolution is typically not investigated genome-wide due to a lack of bioinformatic packages that can process and integrate multiple epigenomic datasets with allelic resolution. In addition, existing ad-hoc software only consider SNVs for allele-specific read discovery. This limitation omits potentially informative INDELs, which constitute about one fifth of the number of SNVs in mice, and introduces a systematic reference bias in allele-specific analyses. RESULTS: Here, we describe MEA, an INDEL-aware Methylomic and Epigenomic Allele-specific analysis pipeline which enables user-friendly data exploration, visualization and interpretation of allelic imbalance. Applying MEA to mouse embryonic datasets yields robust allele-specific DNAme maps and low reference bias. We validate allele-specific DNAme at known differentially methylated regions and show that automated integration of such methylation data with RNA- and ChIP-seq datasets yields an intuitive, multidimensional view of allelic gene regulation. MEA uncovers numerous novel dynamically methylated loci, highlighting the sensitivity of our pipeline. Furthermore, processing and visualization of epigenomic datasets from human brain reveals the expected allele-specific enrichment of H3K27ac and DNAme at imprinted as well as novel monoallelically expressed genes, highlighting MEA's utility for integrating human datasets of distinct provenance for genome-wide analysis of allelic phenomena. CONCLUSIONS: Our novel pipeline for standardized allele-specific processing and visualization of disparate epigenomic and methylomic datasets enables rapid analysis and navigation with allelic resolution. MEA is freely available as a Docker container at https://github.com/julienrichardalbert/MEA .


Assuntos
Alelos , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Software , Animais , Imunoprecipitação da Cromatina , Ilhas de CpG , Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Humanos , Mutação INDEL , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Análise de Sequência de DNA , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
12.
PLoS Genet ; 11(1): e1004933, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25611934

RESUMO

Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs.


Assuntos
Metilação de DNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Histona-Lisina N-Metiltransferase/genética , Transcrição Gênica , Animais , Cromatina/genética , Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/genética , Inativação Gênica , Células Germinativas , Camundongos , Camundongos Knockout , RNA Interferente Pequeno , Retroelementos , Elementos Silenciadores Transcricionais/genética , Sumoilação/genética
13.
Bioinformatics ; 32(21): 3324-3326, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27378294

RESUMO

: We present ChAsE, a cross-platform desktop application developed for interactive visualization, exploration and clustering of epigenomic data such as ChIP-seq experiments. ChAsE is designed and developed in close collaboration with several groups of biologists and bioinformaticians with a focus on usability and interactivity. Data can be analyzed through k-means clustering, specifying presence or absence of signal in epigenetic data and performing set operations between clusters. Results can be explored in an interactive heat map and profile plot interface and exported for downstream analysis or as high quality figures suitable for publications. AVAILABILITY AND IMPLEMENTATION: Software, source code (MIT License), data and video tutorials available at http://chase.cs.univie.ac.at CONTACT: : mkarimi@brc.ubc.ca or torsten.moeller@univie.ac.atSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Software , Animais , Análise por Conglomerados , Humanos , Linguagens de Programação
14.
Proc Natl Acad Sci U S A ; 111(18): 6690-5, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24757056

RESUMO

During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed.


Assuntos
Metilação de DNA , Impressão Genômica , Histona-Lisina N-Metiltransferase/metabolismo , Retroelementos/genética , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Epigênese Genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Knockout , DNA Metiltransferase 3B
15.
Trends Biochem Sci ; 37(4): 127-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22178137

RESUMO

Retrotransposons, such as endogenous retroviruses (ERVs), have colonized the genomes of all metazoans. As retrotransposition can be deleterious, numerous pathways have evolved to repress the expression of these parasitic elements. For example, methylation of the fifth carbon of the cytosine base in DNA (5-methylcytosine, 5mC) is required for transcriptional silencing of ERVs in differentiated cells. However, this epigenetic mark is generally dispensable for ERV silencing during early stages of mouse embryogenesis and in mouse embryonic stem cells (mESCs). In this Opinion, we evaluate recent findings on the exceptional role of covalent modifications of histones in ERV silencing in these cell types. In addition, we discuss the potential role of TET proteins, which catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), in perturbing transcriptional silencing, and propose that histone modification-based pathways may be used to silence ERVs during those developmental stages when DNA methylation-mediated silencing is compromised.


Assuntos
Retrovirus Endógenos/genética , Histonas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA/genética , Embrião de Mamíferos/metabolismo , Histona-Lisina N-Metiltransferase , Camundongos , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
16.
Nature ; 464(7290): 927-31, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20164836

RESUMO

Endogenous retroviruses (ERVs), retrovirus-like elements with long terminal repeats, are widely dispersed in the euchromatic compartment in mammalian cells, comprising approximately 10% of the mouse genome. These parasitic elements are responsible for >10% of spontaneous mutations. Whereas DNA methylation has an important role in proviral silencing in somatic and germ-lineage cells, an additional DNA-methylation-independent pathway also functions in embryonal carcinoma and embryonic stem (ES) cells to inhibit transcription of the exogenous gammaretrovirus murine leukaemia virus (MLV). Notably, a recent genome-wide study revealed that ERVs are also marked by histone H3 lysine 9 trimethylation (H3K9me3) and H4K20me3 in ES cells but not in mouse embryonic fibroblasts. However, the role that these marks have in proviral silencing remains unexplored. Here we show that the H3K9 methyltransferase ESET (also called SETDB1 or KMT1E) and the Krüppel-associated box (KRAB)-associated protein 1 (KAP1, also called TRIM28) are required for H3K9me3 and silencing of endogenous and introduced retroviruses specifically in mouse ES cells. Furthermore, whereas ESET enzymatic activity is crucial for HP1 binding and efficient proviral silencing, the H4K20 methyltransferases Suv420h1 and Suv420h2 are dispensable for silencing. Notably, in DNA methyltransferase triple knockout (Dnmt1(-/-)Dnmt3a(-/-)Dnmt3b(-/-)) mouse ES cells, ESET and KAP1 binding and ESET-mediated H3K9me3 are maintained and ERVs are minimally derepressed. We propose that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.


Assuntos
Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/genética , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Metiltransferases/metabolismo , Provírus/genética , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/metabolismo , Fibroblastos , Deleção de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Metiltransferases/deficiência , Proteínas Metiltransferases/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido , DNA Metiltransferase 3B
17.
BMC Bioinformatics ; 16 Suppl 11: S2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26328469

RESUMO

BACKGROUND: Several tools have been developed to enable biologists to perform initial browsing and exploration of sequencing data. However the computational tool set for further analyses often requires significant computational expertise to use and many of the biologists with the knowledge needed to interpret these data must rely on programming experts. RESULTS: We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich and accessible framework for integrative and interactive analyses without requiring programming expertise. We achieve this aim by providing R apps, which offer a semi-auto generated and unified graphical user interface for computational packages in R and repositories such as Bioconductor. To address the interactivity limitation inherent in R libraries, our framework includes several native apps that provide exploration and brushing operations as well as an integrated genome browser. The apps can be chained together to create more powerful analysis workflows. CONCLUSIONS: To validate the usability of VisRseq for analysis of sequencing data, we present two case studies performed by our collaborators and report their workflow and insights.


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Células-Tronco Embrionárias/metabolismo , Células Germinativas/metabolismo , Análise de Sequência de DNA/métodos , Software , Animais , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Frequência do Gene , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Camundongos , Camundongos Endogâmicos C57BL , Trofoblastos , Interface Usuário-Computador , Fluxo de Trabalho
18.
Bioinformatics ; 30(8): 1172-1174, 2014 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-24371156

RESUMO

The assessment of expression and epigenomic status using sequencing based methods provides an unprecedented opportunity to identify and correlate allelic differences with epigenomic status. We present ALEA, a computational toolbox for allele-specific epigenomics analysis, which incorporates allelic variation data within existing resources, allowing for the identification of significant associations between epigenetic modifications and specific allelic variants in human and mouse cells. ALEA provides a customizable pipeline of command line tools for allele-specific analysis of next-generation sequencing data (ChIP-seq, RNA-seq, etc.) that takes the raw sequencing data and produces separate allelic tracks ready to be viewed on genome browsers. The pipeline has been validated using human and hybrid mouse ChIP-seq and RNA-seq data. AVAILABILITY: The package, test data and usage instructions are available online at http://www.bcgsc.ca/platform/bioinfo/software/alea CONTACT: : mkarimi1@interchange.ubc.ca or sjones@bcgsc.ca Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Epigenômica/métodos , Software , Alelos , Animais , Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , RNA/genética , Análise de Sequência de RNA/métodos
19.
Proc Natl Acad Sci U S A ; 109(45): 18505-10, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091032

RESUMO

Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady-state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation (H3K14ac), which colocalizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 serve opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that H3K14ac negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histona Desmetilases com o Domínio Jumonji , Metilação , Modelos Biológicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidade por Substrato
20.
Mol Ther ; 21(8): 1536-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23752310

RESUMO

Retroviral vectors are silenced in embryonic stem (ES) cells by epigenetic mechanisms whose kinetics are poorly understood. We show here that a 3'D4Z4 insulator directs retroviral expression with persistent but variable expression for up to 5 months. Combining an internal 3'D4Z4 with HS4 insulators in the long terminal repeats (LTRs) shows that these elements cooperate, and defines the first retroviral vector that fully escapes long-term silencing. Using FLP recombinase to induce deletion of 3'D4Z4 from the provirus in ES cell clones, we established retroviral silencing at many but not all integration sites. This finding shows that 3'D4Z4 does not target retrovirus integration into favorable epigenomic domains but rather protects the transgene from silencing. Chromatin analyses demonstrate that 3'D4Z4 blocks the spread of heterochromatin marks including DNA methylation and repressive histone modifications such as H3K9 methylation. In addition, our deletion system reveals three distinct kinetic classes of silencing (rapid, gradual or not silenced), in which multiple epigenetic pathways participate in silencing at different integration sites. We conclude that vectors with both 3'D4Z4 and HS4 insulator elements fully block silencing, and may have unprecedented utility for gene transfer applications that require long-term gene expression in pluripotent stem (PS) cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Inativação Gênica , Vetores Genéticos/genética , Elementos Isolantes , Retroviridae/genética , Deleção de Sequência , Animais , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Ordem dos Genes , Histonas/metabolismo , Recombinação Homóloga , Cinética , Metilação , Camundongos , Provírus/genética , Sequências Repetidas Terminais , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA