Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Dermatol ; 30(2): 193-200, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107136

RESUMO

Mast cells are innate immune cells located at many barrier sites in the body and known to protect the host against environmental threats and to be involved in allergic diseases. More recently, new studies have investigated their roles in the regulation of skin inflammation and transmission of pain and itch sensations. Mast cell signalling through the Mas-related G protein-coupled receptor (MRGPR) X2 or its mouse orthologue MRGPRB2 has been reported to be one of the major mechanism by which mast cell can regulate such processes. MRGPRX2 and MRGPRB2 can induce mast cell degranulation upon binding to a broad panel of cationic molecules such as neuropeptides, bacteria-derived quorum sensing molecules, venom peptides, host defense peptides and, unfortunately, various FDA-approved drugs. Upon activation, mast cells release granule-associated proteases, lipids and multiple cytokines that can modulate vascular permeability, immune cells recruitment and activation status of tissue-projecting nociceptive sensory neurons (ie nociceptors). Here, we discuss the modality of MRGPRX2-dependent mast cell activation and its different consequences on the patterns of skin inflammation and associated diseases. We notably emphasize how MRGPRX2-dependent skin mast cell activation might trigger various pathological traits such as pruritus, pain and inflammation and therefore become a potential therapeutic target for inflammatory pain, itch, atopic dermatitis and drugs-induced injection site reactions.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Nociceptividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Dermatopatias/metabolismo , Animais , Cátions , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Humanos , Reação no Local da Injeção/imunologia , Reação no Local da Injeção/metabolismo , Mastócitos/fisiologia , Neuroimunomodulação , Prurido/imunologia , Prurido/metabolismo , Dermatopatias/imunologia
2.
Eur Heart J ; 40(11): 928-937, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30541066

RESUMO

AIMS: Inflammatory mediators, including blood cells and their products, contribute critically to atherogenesis, but the igniting triggers of inflammation remain elusive. Atherosclerosis develops at sites of flow perturbation, where the enhanced haemodynamic stress could initiate the atherogenic inflammatory process due to the occurrence of mechanic injury. We investigated the role of haemodynamic stress-induced breaches, allowing the entry of blood cells in the arterial intima, in triggering inflammation-driven atherogenesis. METHODS AND RESULTS: Human coronary samples isolated from explanted hearts, (n = 47) displayed signs of blood entry (detected by the presence of iron, ferritin, and glycophorin A) in the subintimal space (54%) as assessed by histology, immunofluorescence, high resolution episcopic microscopy, and scanning electron microscopy. Computational flow dynamic analysis showed that intimal haemorrhagic events occurred at sites of flow disturbance. Experimental carotid arteries from Apoe deficient mice showed discrete endothelial breaches and intimal haemorrhagic events specifically occurring at the site of flow perturbation, within 3 days after the exacerbation of the local haemodynamic stress. Endothelial tearing was associated with increased VCAM-1 expression and, within 7 days, substantial Ly6G+ leucocytes accumulated at the sites of erythrocyte-derived iron and lipids droplets accumulation, pathological intimal thickening and positive oil red O staining. The formation of fatty streaks at the sites of intimal breaches was prevented by the depletion of Ly6G+ leucocytes, suggesting that the local injury driven by haemodynamic stress-induced breaches triggers atherogenic inflammation. CONCLUSION: Haemodynamic-driven breaches of the arterial intima drive atherogenic inflammation by triggering the recruitment of leucocyte at sites of disturbed arterial flow.


Assuntos
Aterosclerose/metabolismo , Hemodinâmica/fisiologia , Inflamação/patologia , Túnica Íntima/patologia , Animais , Antígenos Ly/metabolismo , Apolipoproteínas E/deficiência , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Leucócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Mecânico , Túnica Íntima/lesões , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37462672

RESUMO

Mast cells (MCs) are tissue-resident immune cells that exhibit homeostatic and neuron-associated functions. Here, we combined whole-tissue imaging and single-cell RNA sequencing datasets to generate a pan-organ analysis of MCs in mice and humans at steady state. In mice, we identify two mutually exclusive MC populations, MrgprB2+ connective tissue-type MCs and MrgprB2neg mucosal-type MCs, with specific transcriptomic core signatures. While MrgprB2+ MCs develop in utero independently of the bone marrow, MrgprB2neg MCs develop after birth and are renewed by bone marrow progenitors. In humans, we unbiasedly identify seven MC subsets (MC1-7) distributed across 12 organs with different transcriptomic core signatures. MC1 are preferentially enriched in the bladder, MC2 in the lungs, and MC4, MC6, and MC7 in the skin. Conversely, MC3 and MC5 are shared by most organs but not skin. This comprehensive analysis offers valuable insights into the natural diversity of MC subtypes in both mice and humans.


Assuntos
Mastócitos , Mucosa , Humanos , Camundongos , Animais , Transcriptoma/genética
4.
PLoS One ; 18(12): e0295408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055674

RESUMO

AIMS: IgE type immunoglobulins and their specific effector cells, mast cells (MCs), are associated with abdominal aortic aneurysm (AAA) progression. In parallel, immunoglobulin-producing B cells, organised in tertiary lymphoid organs (TLOs) within the aortic wall, have also been linked to aneurysmal progression. We aimed at investigating the potential role and mechanism linking local MCs, TLO B cells, and IgE production in aneurysmal progression. METHODS AND RESULTS: Through histological assays conducted on human surgical samples from AAA patients, we uncovered that activated MCs were enriched at sites of unhealed haematomas, due to subclinical aortic wall fissuring, in close proximity to adventitial IgE+ TLO B cells. Remarkably, in vitro the IgEs deriving from these samples enhanced MC production of IL-4, a cytokine which favors IgE class-switching and production by B cells. Finally, the role of MCs in aneurysmal progression was further analysed in vivo in ApoE-/- mice subjected to angiotensin II infusion aneurysm model, through MC-specific depletion after the establishment of dissecting aneurysms. MC-specific depletion improved intramural haematoma healing and reduced aneurysmal progression. CONCLUSIONS: Our data suggest that MC located close to aortic wall fissures are activated by adventitial TLO B cell-produced IgEs and participate to their own activation by providing support for further IgE synthesis through IL-4 production. By preventing prompt repair of aortic subclinical fissures, such a runaway MC activation loop could precipitate aneurysmal progression, suggesting that MC-targeting treatments may represent an interesting adjunctive therapy for reducing AAA progression.


Assuntos
Aneurisma da Aorta Abdominal , Mastócitos , Humanos , Camundongos , Animais , Mastócitos/metabolismo , Interleucina-4/metabolismo , Camundongos Knockout para ApoE , Aneurisma da Aorta Abdominal/patologia , Imunoglobulina E/metabolismo , Modelos Animais de Doenças , Aorta Abdominal/patologia , Angiotensina II/metabolismo , Camundongos Endogâmicos C57BL
5.
Metabolites ; 12(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35323704

RESUMO

Autosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype.

6.
Angiology ; 72(6): 539-549, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32851875

RESUMO

Rupture of splenic artery aneurysms (SAAs) is associated with a high mortality rate. The aim of this study was to identify the features of SAAs. Tissue sections from SAAs were compared to nonaneurysmal splenic arteries using various stains. The presence of intraluminal thrombus (ILT), vascular smooth muscle cells (VSMCs), cluster of differentiation (CD)-68+ phagocytes, myeloperoxidase+ neutrophils, CD3+, and CD20+ adaptive immune cells were studied using immunofluorescence microscopy. Analysis of SAAs revealed the presence of atherosclerotic lesions, calcifications, and ILT. Splenic artery aneurysms were characterized by a profound vascular remodeling with a dramatic loss of VSMCs, elastin degradation, adventitial fibrosis associated with enhanced apoptosis, and increased matrix metalloproteinase 9 expression. We observed an infiltration of immune cells comprising macrophages, neutrophils, T, and B cells. The T and B cells were found in the adventitial layer of SAAs, but their organization into tertiary lymphoid organs was halted. We failed to detect germinal centers even in the most organized T/B cell follicles and these lymphoid clusters lacked lymphoid stromal cells. This detailed histopathological characterization of the vascular remodeling during SAA showed that lymphoid neogenesis was incomplete, suggesting that critical mediators of their development must be missing.


Assuntos
Aneurisma/imunologia , Aneurisma/patologia , Leucócitos/imunologia , Macrófagos/imunologia , Artéria Esplênica/imunologia , Artéria Esplênica/patologia , Remodelação Vascular , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneurisma/metabolismo , Aneurisma/cirurgia , Apoptose , Linfócitos B/imunologia , Biomarcadores/análise , Feminino , Fibrose , Humanos , Macrófagos/química , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Estudos Retrospectivos , Artéria Esplênica/química , Artéria Esplênica/cirurgia , Linfócitos T/imunologia
7.
Nat Commun ; 12(1): 2574, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976140

RESUMO

Allergic asthma is characterized by elevated levels of IgE antibodies, type 2 cytokines such as interleukin-4 (IL-4) and IL-13, airway hyperresponsiveness (AHR), mucus hypersecretion and eosinophilia. Approved therapeutic monoclonal antibodies targeting IgE or IL-4/IL-13 reduce asthma symptoms but require costly lifelong administrations. Here, we develop conjugate vaccines against mouse IL-4 and IL-13, and demonstrate their prophylactic and therapeutic efficacy in reducing IgE levels, AHR, eosinophilia and mucus production in mouse models of asthma analyzed up to 15 weeks after initial vaccination. More importantly, we also test similar vaccines specific for human IL-4/IL-13 in mice expressing human IL-4/IL-13 and the related receptor, IL-4Rα, to find efficient neutralization of both cytokines and reduced IgE levels for at least 11 weeks post-vaccination. Our results imply that dual IL-4/IL-13 vaccination may represent a cost-effective, long-term therapeutic strategy for the treatment of allergic asthma as demonstrated in mouse models, although additional studies are warranted to assess its safety and feasibility.


Assuntos
Asma/terapia , Interleucina-13/antagonistas & inibidores , Interleucina-4/antagonistas & inibidores , Vacinação/métodos , Animais , Asma/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Doença Crônica/terapia , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intramusculares , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Camundongos , Camundongos Transgênicos , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA