Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 104(50): 19897-902, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18077421

RESUMO

We report Quaternary vertebrate and plant fossils from Sawmill Sink, a "blue hole" (a water-filled sinkhole) on Great Abaco Island, The Bahamas. The fossils are well preserved because of deposition in anoxic salt water. Vertebrate fossils from peat on the talus cone are radiocarbon-dated from approximately 4,200 to 1,000 cal BP (Late Holocene). The peat produced skeletons of two extinct species (tortoise Chelonoidis undescribed sp. and Caracara Caracara creightoni) and two extant species no longer in The Bahamas (Cuban crocodile, Crocodylus rhombifer; and Cooper's or Gundlach's Hawk, Accipiter cooperii or Accipiter gundlachii). A different, inorganic bone deposit on a limestone ledge in Sawmill Sink is a Late Pleistocene owl roost that features lizards (one species), snakes (three species), birds (25 species), and bats (four species). The owl roost fauna includes Rallus undescribed sp. (extinct; the first Bahamian flightless rail) and four other locally extinct species of birds (Cooper's/Gundlach's Hawk, A. cooperii/gundlachii; flicker Colaptes sp.; Cave Swallow, Petrochelidon fulva; and Eastern Meadowlark, Sturnella magna) and mammals (Bahamian hutia, Geocapromys ingrahami; and a bat, Myotis sp.). The exquisitely preserved fossils from Sawmill Sink suggest a grassy pineland as the dominant plant community on Abaco in the Late Pleistocene, with a heavier component of coppice (tropical dry evergreen forest) in the Late Holocene. Important in its own right, this information also will help biologists and government planners to develop conservation programs in The Bahamas that consider long-term ecological and cultural processes.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Falconiformes/anatomia & histologia , Fósseis , História Natural , Plantas/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Bahamas , Humanos
2.
Am J Bot ; 96(6): 1108-15, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21628261

RESUMO

One method to determine past climate has been the use of leaf morphological characteristics of fossil leaves quantified using modern climate and canopy leaf characteristics. Fossil assemblages are composed of abscised leaves, and climate may be more accurately determined by using leaves from leaf litter instead of the canopy. To better understand whether taphonomic processes make a difference in this relationship, a north-central Florida woodland was sampled to determine the morphologically based climate estimates from these leaves. Leaves from woody, dicotyledonous plants were collected and identified, then compared using presence/absence data and analyzed using several linear regression equations and the CLAMP data set. Although the majority of standing vegetation was reflected in leaf litter, some inconsistencies were observed, which may reflect plant community structure or sampling technique. Mean annual temperature (MAT) and growing season precipitation (GSP) were estimated from leaf litter morphological characters and living leaves. Overall, values for MAT estimated from litter and living leaves were cooler than actual MATs, although several accurate and high estimates were obtained depending on the predictive method used. Estimated GSP values were higher than actual GSPs. Statistically, no difference was observed between MAT and GSP estimates derived from leaf litter vs. estimates derived from living leaves, with one exception.

3.
Am J Bot ; 92(8): 1294-310, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21646150

RESUMO

Welwitschiaceae, a family in the Gnetales, is known today from only one extant species, Welwitschia mirabilis. This species is distributed in the Namibian desert, along the western coast of southern Africa, about 10 km inland from the coast. Very little is known about the fossil record of this family. Lower Cretaceous megafossils of various organs, assigned to Welwitschiaceae, are presented here. These fossils include young stems with paired cotyledons attached (Welwitschiella austroamericana n. gen. et sp.), isolated leaves (Welwitschiophyllum brasiliense n. gen. et sp.), and axes bearing male cones (Welwitschiostrobus murili n. gen. et sp.). They were collected in the Crato Formation, which is dated by palynomorphs and ostracods as Late Aptian (114 to 112 million years ago). These sediments are exposed in the Araripe Basin of northeastern Brazil. This study brings together new information of the megafossil record of Welwitschia-like plants and also reports of pollen said to be similar to that of Welwitschia from Lower Cretaceous sediments.

4.
Am J Bot ; 92(2): 231-41, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21652400

RESUMO

Detailed investigations on Lower Cretaceous Ephedra L. fossils (Gnetopsida) reveal morphological characters similar to those of extant Ephedra rhytidosperma Pachomova, including articulate branches with many fine longitudinal striations, a dichasial branching pattern, uni- or bi-ovulate cones with paired bracts, cones terminal on branchlets, and seeds with a short, straight micropylar tubes, covered by numerous regular and prominent transverse laminar protuberances. Fossils are similar to extant E. rhytidosperma reproductive organs but differ in some vegetative structures and are described and discussed here as Ephedra archaeorhytidosperma Y. Yang et al. Because E. rhytidosperma is currently considered one of the most specialized members in Ephedra L. section Pseudobaccatae Stapf, the occurrence of E. archaeorhytidosperma in the Yixian Formation suggests that Ephedra L. was perhaps a more diverse genus in the Lower Cretaceous. Perhaps the evolution and diversity of Ephedra L. was already in place by the Lower Cretaceous and certainly before the end of the Mesozoic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA