Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362840

RESUMO

Pancreatic ß cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse ß cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their ß cells are viable, and their ß cells still contain numerous insulin granules. Endocytosis in these ß cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in ß cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.


Assuntos
Dinaminas/genética , Hiperglicemia/etiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Glicemia/genética , Glicemia/metabolismo , Sinalização do Cálcio/genética , Vesículas de Núcleo Denso/metabolismo , Dinamina II/genética , Dinaminas/metabolismo , Endocitose/fisiologia , Feminino , Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(22): E3150-8, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185948

RESUMO

Dynamin is a large GTPase with a crucial role in synaptic vesicle regeneration. Acute dynamin inhibition impairs neurotransmitter release, in agreement with the protein's established role in vesicle resupply. Here, using tissue-specific dynamin-1 knockout [conditional knockout (cKO)] mice at a fast central synapse that releases neurotransmitter at high rates, we report that dynamin-1 deletion unexpectedly leads to enhanced steady-state neurotransmission and consequently less synaptic depression during brief periods of high-frequency stimulation. These changes are also accompanied by increased transmission failures. Interestingly, synaptic vesicle resupply and several other synaptic properties remain intact, including basal neurotransmission, presynaptic Ca(2+) influx, initial release probability, and postsynaptic receptor saturation and desensitization. However, acute application of Latrunculin B, a reagent known to induce actin depolymerization and impair bulk and ultrafast endocytosis, has a stronger effect on steady-state depression in cKO than in control and brings the depression down to a control level. The slow phase of presynaptic capacitance decay following strong stimulation is impaired in cKO; the rapid capacitance changes immediately after strong depolarization are also different between control and cKO and sensitive to Latrunculin B. These data raise the possibility that, in addition to its established function in regenerating synaptic vesicles, the endocytosis protein dynamin-1 may have an impact on short-term synaptic depression. This role comes into play primarily during brief high-frequency stimulation.


Assuntos
Depressão/prevenção & controle , Dinamina I/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Animais , Endocitose/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Técnicas de Patch-Clamp
3.
J Neurosci ; 36(22): 6097-115, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251629

RESUMO

UNLABELLED: Dynamin is a large GTPase crucial for endocytosis and sustained neurotransmission, but its role in synapse development in the mammalian brain has received little attention. We addressed this question using the calyx of Held (CH), a large nerve terminal in the auditory brainstem in mice. Tissue-specific ablation of different dynamin isoforms bypasses the early lethality of conventional knock-outs and allows us to examine CH development in a native brain circuit. Individual gene deletion of dynamin 1, a primary dynamin isoform in neurons, as well as dynamin 2 and 3, did not affect CH development. However, combined tissue-specific knock-out of both dynamin 1 and 3 (cDKO) severely impaired CH formation and growth during the first postnatal week, and the phenotypes were exacerbated by further additive conditional knock-out of dynamin 2. The developmental defect of CH in cDKO first became evident on postnatal day 3 (P3), a time point when CH forms and grows abruptly. This is followed by a progressive loss of postsynaptic neurons and increased glial infiltration late in development. However, early CH synaptogenesis before protocalyx formation was not altered in cDKO. Functional maturation of synaptic transmission in the medial nucleus of the trapezoid body in cDKO was impeded during development and accompanied by an increase in the membrane excitability of medial nucleus of the trapezoid body neurons. This study provides compelling genetic evidence that CH formation requires dynamin 1- and 3-mediated endocytosis in vivo, indicating a critical role of dynamin in synaptic development, maturation, and subsequent maintenance in the mammalian brain. SIGNIFICANCE STATEMENT: Synaptic development has been increasingly implicated in numerous brain disorders. Dynamin plays a crucial role in clathrin-mediated endocytosis and synaptic transmission at nerve terminals, but its potential role in synaptic development in the native brain circuitry is unclear. Using the calyx of Held, a giant nerve terminal in the mouse brainstem, we evaluated the role of dynamin in this process by using tissue-specific knock-out (KO) of three different dynamin isoforms (dynamin 1, 2, and 3) individually and in combination. Our data demonstrated that dynamin is required for the formation, functional maturation, and subsequent survival of the calyx of Held. This study highlights the important role of dynamin-mediated endocytosis in the development of central synapses in the mammalian brain.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/crescimento & desenvolvimento , Dinamina III/deficiência , Dinamina I/deficiência , Endocitose/fisiologia , Sinapses/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Dinamina I/genética , Dinamina III/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Estimulação Elétrica , Endocitose/genética , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
4.
J Physiol ; 595(1): 193-206, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27229184

RESUMO

KEY POINTS: Post-tetanic potentiation (PTP) is attributed mainly to an increase in release probability (Pr ) and/or readily-releasable pool (RRP) in many synapses, but the role of endocytosis in PTP is unknown. Using the calyx of Held synapse from tissue-specific dynamin-1 knockout (cKO) mice (P16-20), we report that cKO synapses show enhanced PTP compared to control. We found significant increases in both spontaneous excitatory postsynaptic current (spEPSC) amplitude and RRP size (estimated by a train of 30 APs at 100 Hz) in cKO over control during PTP. Actin depolymerization blocks the increase in spEPSC amplitude in both control and cKO, and it abolishes the enhancement of PTP in cKO. PTP is sensitive to the PKC inhibitor GF109203X in both control and cKO. We conclude that an activity-dependent quantal size increase contributes to the enhancement of PTP in cKO over control and an altered endocytosis affects short-term plasticity through quantal size changes. ABSTRACT: High-frequency stimulation leads to post-tetanic potentiation (PTP) at many types of synapses. Previous studies suggest that PTP results primarily from a protein kinase C (PKC)-dependent increase in release probability (Pr ) and/or readily-releasable pool (RRP) of synaptic vesicles (SVs), but the role of SV endocytosis in PTP is unknown. Using the mature calyx of Held (P16-20), we report that tissue-specific ablation of dynamin-1 (cKO), an endocytic protein crucial for SV regeneration, enhances PTP in cKO over control. To explore the mechanism of this enhancement, we estimated the changes in paired-pulse ratios (PPRs) and RRP size during PTP. RRP was estimated by the back-extrapolation of cumulative EPSC amplitudes during a train of 30 action potentials at 100 Hz (termed RRPtrain ). We found an increase in RRPtrain during PTP in both control and cKO, but no significant changes in the PPR. Moreover, the amplitude and frequency of spontaneous excitatory postsynaptic currents (spEPSCs) increased during PTP in both control and cKO; however, the spEPSC amplitude in cKO during PTP was significantly larger than in control. Actin depolymerization reagent latrunculin-B (Lat-B) abolished the activity-dependent increase in spEPSC amplitude in both control and cKO, but selectively blocked the enhancement of PTP in cKO, without affecting PTP in control. PKC inhibitor GF109203X nearly abolished PTP in both control and cKO. These data suggest that the quantal size increase contributes to the enhancement of PTP in dynamin-1 cKO, and this change depends on strong synaptic activity and actin polymerization.


Assuntos
Tronco Encefálico/fisiologia , Dinamina I/fisiologia , Sinapses/fisiologia , Animais , Dinamina I/genética , Estimulação Elétrica , Endocitose , Potenciais Pós-Sinápticos Excitadores , Camundongos Knockout
5.
J Biol Chem ; 290(45): 26978-26993, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26396197

RESUMO

Both phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are independent plasma membrane (PM) determinant lipids that are essential for multiple cellular functions. However, their nanoscale spatial organization in the PM remains elusive. Using single-molecule superresolution microscopy and new photoactivatable fluorescence probes on the basis of pleckstrin homology domains that specifically recognize phosphatidylinositides in insulin-secreting INS-1 cells, we report that the PI(4,5)P2 probes exhibited a remarkably uniform distribution in the major regions of the PM, with some sparse PI(4,5)P2-enriched membrane patches/domains of diverse sizes (383 ± 14 nm on average). Quantitative analysis revealed a modest concentration gradient that was much less steep than previously thought, and no densely packed PI(4,5)P2 nanodomains were observed. Live-cell superresolution imaging further demonstrated the dynamic structural changes of those domains in the flat PM and membrane protrusions. PI4P and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) showed similar spatial distributions as PI(4,5)P2. These data reveal the nanoscale landscape of key inositol phospholipids in the native PM and imply a framework for local cellular signaling and lipid-protein interactions at a nanometer scale.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Chlorocebus aethiops , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Proteínas Luminescentes/metabolismo , Microtúbulos/metabolismo , Nanotecnologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais , Sintaxina 1/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(8): E515-23, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308498

RESUMO

Endocytic recycling of synaptic vesicles after exocytosis is critical for nervous system function. At synapses of cultured neurons that lack the two "neuronal" dynamins, dynamin 1 and 3, smaller excitatory postsynaptic currents are observed due to an impairment of the fission reaction of endocytosis that results in an accumulation of arrested clathrin-coated pits and a greatly reduced synaptic vesicle number. Surprisingly, despite a smaller readily releasable vesicle pool and fewer docked vesicles, a strong facilitation, which correlated with lower vesicle release probability, was observed upon action potential stimulation at such synapses. Furthermore, although network activity in mutant cultures was lower, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity was unexpectedly increased, consistent with the previous report of an enhanced state of synapsin 1 phosphorylation at CaMKII-dependent sites in such neurons. These changes were partially reversed by overnight silencing of synaptic activity with tetrodotoxin, a treatment that allows progression of arrested endocytic pits to synaptic vesicles. Facilitation was also counteracted by CaMKII inhibition. These findings reveal a mechanism aimed at preventing synaptic transmission failure due to vesicle depletion when recycling vesicle traffic is backed up by a defect in dynamin-dependent endocytosis and provide new insight into the coupling between endocytosis and exocytosis.


Assuntos
Dinaminas/metabolismo , Mutação/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/patologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/ultraestrutura , Regulação para Cima
7.
Artigo em Inglês | MEDLINE | ID: mdl-39441983

RESUMO

OBJECTIVE: The NIH All of Us Research Program aims to advance personalized medicine by not only linking patient records, surveys, and genomic data but also engaging with participants, particularly from groups traditionally underrepresented in biomedical research (UBR). This study details how the dialogue between scientists and community members, including many from communities of color, shaped local research priorities. MATERIALS AND METHODS: We recruited area quantitative, basic, and clinical scientists as well as community members from our Community and Participant Advisory Boards with a predetermined interest in All of Us research as members of a Special Interest Group (SIG). An expert community engagement scientist facilitated 6 SIG meetings over the year, explicitly fostering openness and flexibility during conversations. We qualitatively analyzed discussions using a social movement framework tailored for community-based participatory research (CBPR) mobilization. RESULTS: The SIG evolved through CBPR stages of emergence, coalescence, momentum, and maintenance/integration. Researchers prioritized community needs above personal academic interests while community members kept discussions focused on tangible return of value to communities. One key outcome includes SIG-driven shifts in programmatic and research priorities of the All of Us Research Program in Southeastern Wisconsin. One major challenge was building equitable conversations that balanced scientific rigor and community understanding. DISCUSSION: Our approach allowed for a rich dialogue to emerge. Points of connection and disconnection between community members and scientists offered important guidance for emerging areas of genomic inquiry. CONCLUSION: Our study presents a robust foundation for future efforts to engage diverse communities in CBPR, particularly on healthcare concerns affecting UBR communities.

8.
Nature ; 435(7041): 497-501, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-15917809

RESUMO

Neurotransmitter release is triggered by an increase in the cytosolic Ca2+ concentration ([Ca2+]i), but it is unknown whether the Ca2+-sensitivity of vesicle fusion is modulated during synaptic plasticity. We investigated whether the potentiation of neurotransmitter release by phorbol esters, which target presynaptic protein kinase C (PKC)/munc-13 signalling cascades, exerts a direct effect on the Ca2+-sensitivity of vesicle fusion. Using direct presynaptic Ca2+-manipulation and Ca2+ uncaging at a giant presynaptic terminal, the calyx of Held, we show that phorbol esters potentiate transmitter release by increasing the apparent Ca2+-sensitivity of vesicle fusion. Phorbol esters potentiate Ca2+-evoked release as well as the spontaneous release rate. We explain both effects by an increased fusion 'willingness' in a new allosteric model of Ca2+-activation of vesicle fusion. In agreement with an allosteric mechanism, we observe that the classically high Ca2+ cooperativity in triggering vesicle fusion (approximately 4) is gradually reduced below 3 microM [Ca2+]i, reaching a value of <1 at basal [Ca2+]i. Our data indicate that spontaneous transmitter release close to resting [Ca2+]i is a consequence of an intrinsic property of the molecular machinery that mediates synaptic vesicle fusion.


Assuntos
Cálcio/metabolismo , Fusão de Membrana , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Fusão de Membrana/efeitos dos fármacos , Modelos Biológicos , Dibutirato de 12,13-Forbol/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 105(45): 17555-60, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-18987309

RESUMO

Exocytosis of synaptic vesicles is rapidly followed by compensatory plasma membrane endocytosis. The efficiency of endocytosis varies with experimental conditions, but the molecular basis for this control remains poorly understood. Here, the function of dynamin 1, the neuron-specific member of a family of GTPases implicated in vesicle fission, was investigated with high temporal resolution via membrane capacitance measurements at the calyx of Held, a giant glutamatergic synapse. Endocytosis at dynamin 1 KO calyces was the same as in wild type after weak stimuli, consistent with the nearly normal ultrastructure of mutant synapses. However, following stronger stimuli, the speed of slow endocytosis, but not of other forms of endocytosis, failed to scale with the increased endocytic load. Thus, high level expression of dynamin 1 is essential to allow the slow, clathrin-mediated endocytosis, which accounts for the bulk of the endocytic response, to operate efficiently over a wide range of activity.


Assuntos
Dinamina I/genética , Endocitose/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Modelos Lineares , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Sinapses/ultraestrutura
10.
Methods Mol Biol ; 2251: 91-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481233

RESUMO

Phosphoinositides make up only a small fraction of cellular phospholipids yet control cell function in a fundamental manner. Through protein interactions, phosphoinositides define cellular organelle identity and regulate protein function and organization and recruitment at the cytosol-membrane interface. As a result, perturbations on phosphoinositide metabolism alter cell physiology and lead to a wide range of human diseases, including cancer and diabetes. Among seven phosphoinositide members, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2, also known as PI(4,5)P2 or PIP2) is abundant in the plasma membrane. Besides its role in the second messenger pathway of phospholipase C that cleaves PtdIns(4,5)P2 to form diacylglycerol and inositol-1,4,5-trisphosphate (IP3), PtdIns(4,5)P2 regulates membrane trafficking and the function of the cytoskeleton, ion channels, and transporters. The nanoscale organization of PtdIns(4,5)P2 in the plasma membrane becomes essential to understand cellular signaling specificity in time and space. Here, we describe a single-molecule method to visualize the nanoscale distribution of PtdIns(4,5)P2 in the plasma membrane by using super-resolution microscopy and the dual-color fluorescent probes based on the PLCδ1 pleckstrin homology (PH) domain. This approach can be extended to image other phosphoinositides by changing the specific probes.


Assuntos
Membrana Celular/química , Fosfatidilinositóis/análise , Imagem Individual de Molécula/métodos , Animais , Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Humanos , Membranas/metabolismo , Microscopia de Fluorescência/métodos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Transporte Proteico/fisiologia , Fosfolipases Tipo C/análise , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo
11.
J Neurosci ; 28(33): 8257-67, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18701688

RESUMO

Diacylglycerol (DAG) and phorbol esters strongly potentiate transmitter release at synapses by activating protein kinase C (PKC) and members of the Munc13 family of presynaptic vesicle priming proteins. This PKC/Munc13 pathway has emerged as a crucial regulator of release probability during various forms of activity-dependent enhancement of release. Here, we investigated the relative roles of PKC and Munc13-1 in the phorbol ester potentiation of evoked and spontaneous transmitter release at the calyx of Held synapse. The phorbol ester phorbol 12,13-dibutyrate (1 microM) potentiated the frequency of miniature EPSCs, and the amplitudes of evoked EPSCs with a similar time course. Preincubating slices with the PKC blocker Ro31-82200 reduced the potentiation, mainly by affecting a late phase of the phorbol ester potentiation. The Ro31-8220-insensitive potentiation was most likely mediated by Munc13-1, because in organotypic slices of Munc13-1(H567K) knock-in mice, in which DAG binding to Munc13-1 is abolished, the potentiation of spontaneous release by phorbol ester was strongly suppressed. Using direct presynaptic depolarizations in paired recordings, we show that the phorbol ester potentiation does not go along with an increase in the number of readily releasable vesicles, despite an increase in the cumulative EPSC amplitude during 100 Hz stimulation trains. Our data indicate that activation of Munc13 and PKC both contribute to an enhancement of the fusion probability of readily releasable vesicles. Thus, docked and readily releasable vesicles are a substrate for modulation via intracellular second-messenger pathways that act via Munc13 and PKC.


Assuntos
Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Ésteres de Forbol/farmacologia , Proteína Quinase C/metabolismo , Animais , Sinergismo Farmacológico , Potenciais Pós-Sinápticos Excitadores/genética , Indóis/farmacologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurotransmissores/deficiência , Neurotransmissores/genética , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/metabolismo , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar
12.
J Neurosci ; 27(12): 3198-210, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17376981

RESUMO

Heterogeneity of release probability p between vesicles in the readily releasable pool (RRP) is expected to strongly influence the kinetics of depression at synapses, but the underlying mechanism(s) are not well understood. To test whether differences in the intrinsic Ca2+ sensitivity of vesicle fusion might cause heterogeneity of p, we made presynaptic Ca2+-uncaging measurements at the calyx of Held and analyzed the time course of transmitter release by EPSC deconvolution. Ca2+ uncaging, which produced spatially homogeneous elevations of [Ca2+]i, evoked a fast and a slow component of release over a wide range of [Ca2+]i, showing that mechanism(s) intrinsic to the vesicle fusion machinery cause fast and slow transmitter release. Surprisingly, the number of vesicles released in the fast component increased with Ca2+-uncaging stimuli of larger amplitudes, a finding that was most obvious below approximately 10 microM [Ca2+]i and that we call "submaximal release" of fast-releasable vesicles. During trains of action potential-like presynaptic depolarizations, submaximal release was also observed as an increase in the cumulative fast release at enhanced release probabilities. A model that assumes two separate subpools of RRP vesicles with different intrinsic Ca2+ sensitivities predicted the observed Ca2+ dependencies of fast and slow transmitter release but could not fully account for submaximal release. Thus, fast and slow transmitter release in response to prolonged [Ca2+]i elevations is caused by intrinsic differences between RRP vesicles, and an "a posteriori" reduction of the Ca2+ sensitivity of vesicle fusion after the onset of the stimulus might cause submaximal release of fast-releasable vesicles and contribute to short-term synaptic depression.


Assuntos
Sistema Nervoso Central/metabolismo , Fusão de Membrana/fisiologia , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Fatores de Tempo
13.
Front Cell Neurosci ; 12: 66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593500

RESUMO

The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can "sense" the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs.

14.
Methods Mol Biol ; 1847: 95-108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30129012

RESUMO

Endocytosis is fundamental to cell function. It can be monitored by capacitance measurements under patch-clamp recordings. Membrane capacitance recording measures the cell membrane surface area and its changes at high temporal-resolution and sensitivity, and it is a powerful biophysical approach in the field of exocytosis and endocytosis. A popular one is the frequency domain method that entails processing passive sinusoidal membrane currents induced by a sinusoidal voltage. This technique requires a phase-sensitive detector or "lock-in amplifier" implemented in hardware or software during patch-clamp recordings. It has been widely used in many secretory cells, but its application directly at central presynaptic terminals is technically challenging. We have applied this technique to study synaptic endocytosis in the calyx of Held, a large glutamatergic synaptic terminal, as well as mouse pancreatic ß-cells. The presynaptic capacitance measurements provide a unique alternative to measuring transmitter release and presynaptic endocytosis. Here, we describe this method at the calyx of Held in acute brain slices and provide a practical guide to obtaining high quality capacitance measurements at presynaptic terminals.


Assuntos
Capacitância Elétrica , Endocitose/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Interpretação Estatística de Dados , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp , Vesículas Sinápticas/metabolismo
15.
Cell Rep ; 20(6): 1409-1421, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793264

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P2 perturbations, rapid and cell-wide PI(4,5)P2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca2+ concentration ([Ca2+]i) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca2+]i. These results highlight a key role of local PI(4,5)P2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P2 signaling in vivo.


Assuntos
Células Secretoras de Insulina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Via Secretória , Vesículas Secretórias/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Membrana Celular/metabolismo , Insulina/metabolismo , Ratos , Sintaxina 1/metabolismo
16.
J Neurosci ; 25(21): 5127-37, 2005 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15917453

RESUMO

Large excitatory synapses in the auditory system, such as the calyx of Held, faithfully transmit trains of action potentials up to a frequency of a few hundred hertz, and these synapses are thought to display a limited repertoire of synaptic plasticity. Here, we show that brief trains of 100 Hz stimulation induce posttetanic potentiation (PTP) of transmitter release at the calyx of Held. In young rats [postnatal day 4 (P4) to P6], PTP could be induced with shorter 100 Hz trains compared with older age groups (P8-P10 and P12-P14), but the maximal amount of PTP was similar, with 200% of control EPSC amplitude. The size of the readily releasable pool of vesicles was not increased significantly during PTP. Bath application of the membrane-permeable Ca2+ chelator EGTA-AM suppressed PTP, indicating a role for presynaptic Ca2+ in PTP at the calyx of Held. Presynaptic Ca2+ imaging showed that the intracellular Ca2+ concentration, [Ca2+]i, was increased by 40-120 nM at the peak of PTP, and this "residual" [Ca2+]i decayed in parallel with PTP, with time constants in the range of 10-60 s. During whole-cell recording of the presynaptic calyx of Held, PTP was absent, and the decay of residual [Ca2+]i was strongly accelerated. The data show that the calyx of Held expresses a mechanism of transmitter release potentiation in which a small, sustained elevation of basal [Ca2+]i increases the transmitter release probability after trains of high-frequency stimulation.


Assuntos
Cálcio/metabolismo , Estimulação Elétrica , Plasticidade Neuronal/efeitos da radiação , Terminações Pré-Sinápticas/fisiologia , Sinapses/efeitos da radiação , Fatores Etários , Compostos de Anilina , Animais , Animais Recém-Nascidos , Benzotiadiazinas/farmacologia , Tronco Encefálico/citologia , Diagnóstico por Imagem/métodos , Relação Dose-Resposta à Radiação , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Oxazóis , Técnicas de Patch-Clamp/métodos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Fatores de Tempo
17.
J Vis Exp ; (116)2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27805608

RESUMO

Phosphoinositides in the cell membrane are signaling lipids with multiple cellular functions. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a determinant phosphoinositide of the plasma membrane (PM), and it is required to modulate ion channels, actin dynamics, exocytosis, endocytosis, intracellular signaling, and many other cellular processes. However, the spatial organization of PI(4,5)P2 in the PM is controversial, and its nanoscale distribution is poorly understood due to the technical limitations of research approaches. Here by utilizing single molecule localization microscopy and the Pleckstrin Homology (PH) domain based dual color fluorescent probes, we describe a novel method to visualize the nanoscale distribution of PI(4,5)P2 in the PM in fixed membrane sheets as well as live cells.


Assuntos
Membrana Celular , Corantes Fluorescentes , Fosfatidilinositol 4,5-Difosfato , Imagem Individual de Molécula , Actinas , Fosfatos de Fosfatidilinositol , Fosfatidilinositóis
18.
J Gen Physiol ; 124(6): 653-62, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15572345

RESUMO

Glucose and other secretagogues are thought to activate a variety of protein kinases. This study was designed to unravel the sites of action of protein kinase A (PKA) and protein kinase C (PKC) in modulating insulin secretion. By using high time resolution measurements of membrane capacitance and flash photolysis of caged Ca(2+), we characterize three kinetically different pools of vesicles in rat pancreatic beta-cells, namely, a highly calcium-sensitive pool (HCSP), a readily releasable pool (RRP), and a reserve pool. The size of the HCSP is approximately 20 fF under resting conditions, but is dramatically increased by application of either phorbol esters or forskolin. Phorbol esters and forskolin also increase the size of RRP to a lesser extent. The augmenting effect of phorbol esters or forskolin is blocked by various PKC or PKA inhibitors, indicating the involvement of these kinases. The effects of PKC and PKA on the size of the HCSP are not additive, suggesting a convergent mechanism. Using a protocol where membrane depolarization is combined with photorelease of Ca(2+), we find that the HCSP is a distinct population of vesicles from those colocalized with Ca(2+) channels. We propose that PKA and PKC promote insulin secretion by increasing the number of vesicles that are highly sensitive to Ca(2+).


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Exocitose/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Proteínas Quinases/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Ativação Enzimática , Secreção de Insulina , Masculino , Ratos , Ratos Wistar
19.
J Clin Invest ; 125(11): 4026-41, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26413867

RESUMO

Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic ß cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in ß cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in ß cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant ß cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control ß cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in ß cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus.


Assuntos
Glicemia/metabolismo , Dinamina II/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Vesículas Revestidas por Clatrina/ultraestrutura , Grânulos Citoplasmáticos/metabolismo , Dinamina II/deficiência , Endocitose , Exocitose , Homeostase , Secreção de Insulina , Células Secretoras de Insulina/ultraestrutura , Camundongos , Camundongos Knockout
20.
Sheng Li Xue Bao ; 54(3): 183-8, 2002 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-12075462

RESUMO

Exocytosis is a vital function of many cell types including neuron, endocrine cell and immunocyte. Secretion in immunocytes involves a complex process of signal transduction, in which many factors still remain unknown. In the last 10 years, this area has become an international hot spot of investigation, resulting in many break-through progresses. This progress was made possible by combined efforts in molecular biology, cell biology and biophysics. This review focuses on notable new knowledge and some new techniques in functional study of secretion in immunocytes.


Assuntos
Linfócitos/metabolismo , Mastócitos/metabolismo , Neutrófilos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Transporte Vesicular , Exocitose/fisiologia , Humanos , Canais Iônicos/fisiologia , Linfócitos/imunologia , Mastócitos/imunologia , Proteínas de Membrana/fisiologia , Neutrófilos/imunologia , Proteínas SNARE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA