Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(21): 5467-5470, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910679

RESUMO

We introduce a new, to the best of our knowledge, class of optical beams, which feature a spatial profile akin to an "inverted pin." In particular, we asymptotically find that close to the axis, the transverse amplitude profile of such beams takes the form of a Bessel function with a width that gradually increases during propagation. We examine numerically the behavior of such inverted pin beams in turbulent environments as measured via the scintillation index and show that they outperform Gaussian beams (collimated and focused) as well as Bessel beams and regular pin beams, which are all optimized, especially in the moderate and strong fluctuation regimes.

2.
Langmuir ; 38(16): 4826-4838, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35421312

RESUMO

The development of a superhydrophobic and, even, water-repellent metal alloy surface is reported utilizing a simple, fast, and economical way that requires minimum demands on the necessary equipment and/or methods used. The procedure involves an initial irradiation of the metallic specimen using a femtosecond laser, which results in a randomly roughened surface, that is subsequently followed by placing the item in an environment under moderate vacuum (pressure 10-2 mbar) and/or under low-temperature heating (at temperatures below 120 °C). The effects of both temperature and low pressure on the surface properties (water contact angle and contact angle hysteresis) are investigated and surfaces with similar superhydrophobicity are obtained in both cases; however, a significant difference concerning their water-repellent ability is obtained. The surfaces that remained under vacuum were water-repellent, exhibiting very high values of contact angle with a very low contact angle hysteresis, whereas the surfaces, which underwent thermal processing, exhibited superhydrophobicity with high water adhesion, where water droplets did not roll off even after a significant inclination of the surface. The kinetics of the development of superhydrophobic behavior was investigated as well. The findings were understood when the surface roughness characteristics were considered together with the chemical composition of the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA