Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(26): e202303111, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37069123

RESUMO

Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both-charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3 (HHTP)2 ), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.


Assuntos
Cobre , Estruturas Metalorgânicas , Lítio , Espectroscopia Dielétrica , Difusão , Íons
2.
Angew Chem Int Ed Engl ; 62(27): e202219188, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799125

RESUMO

Metal/nitrogen-doped carbons (M-N-C) are promising candidates as oxygen electrocatalysts due to their low cost, tunable catalytic activity and selectivity, and well-dispersed morphologies. To improve the electrocatalytic performance of such systems, it is critical to gain a detailed understanding of their structure and properties through advanced characterization. In situ X-ray absorption spectroscopy (XAS) serves as a powerful tool to probe both the active sites and structural evolution of catalytic materials under reaction conditions. In this review, we firstly provide an overview of the fundamental concepts of XAS and then comprehensively review the setup and application of in situ XAS, introducing electrochemical XAS cells, experimental methods, as well as primary functions on catalytic applications. The active sites and the structural evolution of M-N-C catalysts caused by the interplay with electric fields, electrolytes and reactants/intermediates during the oxygen evolution reaction and the oxygen reduction reaction are subsequently discussed in detail. Finally, major challenges and future opportunities in this exciting field are highlighted.

3.
J Phys Chem C Nanomater Interfaces ; 128(7): 2803-2813, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38414833

RESUMO

The local microenvironment has recently been found to play a major role in the electrocatalytic activity of nanomaterials. Modulating the microenvironment by adding alkali metal cations into the electrolyte can be used to either suppress hydrogen or oxygen evolution, thereby extending the electrochemical window of energy storage systems, or to tune the selectivity of electrocatalysts. MXenes are a large family of two-dimensional transition metal carbides, nitrides, and carbonitrides that have shown potential for use in electrochemical energy storage applications. Due to their negatively charged surfaces, MXenes can accommodate cations and water molecules between the layers. Nevertheless, the nature of the aqueous microenvironment in the MXene interlayer space is poorly understood. Here, we apply Fourier transform infrared spectroscopy (FTIR) to probe the hydrogen bonding of intercalated water in Ti3C2Tx as a function of intercalated cation and relative humidity. Substantial changes in the FTIR spectra after cation exchange demonstrate that the hydrogen bonding of water molecules confined between the MXene layers is strongly cation-dependent. Furthermore, the IR absorbance of the confined water correlates with resistivity estimated by 4-point probe measurements and interlayer distance calculated from XRD patterns. This work demonstrates that cation intercalation strongly modulates the confined microenvironment, which can be used to tune the activity or selectivity of electrochemical reactions in the interlayer space of MXenes in the future.

4.
Nat Commun ; 15(1): 7862, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251575

RESUMO

Herein, we report polyphosphonate covalent organic frameworks (COFs) constructed via P-O-P linkages. The materials are synthesized via a single-step condensation reaction of the charge-assisted hydrogen-bonded organic framework, which is constructed from phenylphosphonic acid and 5,10,15,20-tetrakis[p-phenylphosphonic acid]porphyrin and is formed by simply heating its hydrogen-bonded precursor without using chemical reagents. Above 210 °C, it becomes an amorphous microporous polymeric structure due to the oligomerization of P-O-P bonds, which could be shown by constant-time solid-state double-quantum 31P nuclear magnetic resonance experiments. The polyphosphonate COF exhibits good water and water vapor stability during the gas sorption measurements, and electrochemical stability in 0.5 M Na2SO4 electrolyte in water. The reported family of COFs fills a significant gap in the literature by providing stable microporous COFs suitable for use in water and electrolytes. Additionally, we provide a sustainable synthesis route for the COF synthesis. The narrow pores of the COF effectively capture CO2.

5.
ACS Phys Chem Au ; 3(3): 263-278, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37249937

RESUMO

Interfaces at the nanoscale, also called nanointerfaces, play a fundamental role in physics and chemistry. Probing the chemical and electronic environment at nanointerfaces is essential in order to elucidate chemical processes relevant for applications in a variety of fields. Many spectroscopic techniques have been applied for this purpose, although some approaches are more appropriate than others depending on the type of the nanointerface and the physical properties of the different phases. In this Perspective, we introduce the major concepts to be considered when characterizing nanointerfaces. In particular, the interplay between the characteristic length of the nanointerfaces, and the probing and information depths of different spectroscopy techniques is discussed. Differences between nano- and bulk interfaces are explained and illustrated with chosen examples from optical and X-ray spectroscopies, focusing on solid-liquid nanointerfaces. We hope that this Perspective will help to prepare spectroscopic characterization of nanointerfaces and stimulate interest in the development of new spectroscopic techniques adapted to the nanointerfaces.

6.
J Phys Chem Lett ; 14(6): 1578-1584, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36748744

RESUMO

Highly concentrated water-in-salt aqueous electrolytes exhibit a wider potential window compared to conventional, dilute aqueous electrolytes. Coupled with MXenes, a family of two-dimensional transition metal carbides and nitrides with impressive charge storage capabilities, water-in-salt electrolytes present a potential candidate to replace flammable and toxic organic solvents in electrochemical energy storage devices. A new charge storage mechanism was recently discovered during electrochemical cycling of Ti3C2Tx MXene electrodes in lithium-based water-in-salt electrolytes, attributed to intercalation and deintercalation of solvated Li+ ions at anodic potentials. Nevertheless, direct evidence of the state of Li+ solvation during cycling is still missing. Here, we investigate the hydrogen bonding of water intercalated between MXene layers during electrochemical cycling in a water-in-salt electrolyte with operando infrared spectroscopy. The hydrogen-bonding state of the confined water was found to change significantly as a function of potential and the concentration of Li+ ions in the interlayer space. This study provides fundamentally new insights into the electrolyte structural changes while intercalating Li+ in the MXene interlayer space.

7.
Nat Commun ; 14(1): 1322, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898985

RESUMO

The hydration structure of protons has been studied for decades in bulk water and protonated clusters due to its importance but has remained elusive in planar confined environments. Two-dimensional (2D) transition metal carbides known as MXenes show extreme capacitance in protic electrolytes, which has attracted attention in the energy storage field. We report here that discrete vibrational modes related to protons intercalated in the 2D slits between Ti3C2Tx MXene layers can be detected using operando infrared spectroscopy. The origin of these modes, not observed for protons in bulk water, is attributed to protons with reduced coordination number in confinement based on Density Functional Theory calculations. This study therefore demonstrates a useful tool for the characterization of chemical species under 2D confinement.

8.
ACS Appl Mater Interfaces ; 12(13): 15087-15094, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134245

RESUMO

Intercalation in Ti3C2Tx MXene is essential for a diverse set of applications such as water purification, desalination, electrochemical energy storage, and sensing. The interlayer spacing between the Ti3C2Tx nanosheets can be controlled by cation intercalation; however, the impact of intercalation on the Ti3C2Tx MXene chemical and electronic structures is not well understood. Herein, we characterized the electronic structure of pristine, Li-, Na-, K-, and Mg-intercalated Ti3C2Tx MXenes dispersed initially in water and 10 mM sulfuric acid (H2SO4) using X-ray absorption spectroscopy (XAS). The cation intercalation is found to dramatically influence the chemical environment of Ti atoms. The Ti oxidation of the MXene increases progressively upon intercalation of cations of larger sizes after drying in air, while interestingly a low Ti oxidation is observed for all intercalated MXenes after dispersion in diluted H2SO4. In situ XAS at the Ti L-edge was conducted during electrochemical oxidation to probe the changes in the Ti oxidation state in the presence of different cations in H2SO4 aqueous electrolyte. By applying the sensitivity of the Ti L-edge to probe the oxidation state of Ti atoms, we demonstrate that cation-intercalation and H2SO4 environment significantly alter the Ti3C2Tx surface chemistry.

9.
Faraday Discuss ; 172: 293-310, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25427251

RESUMO

Graphene nanoflakes (GNF) of diameter ca. 30 nm and edge-terminated with carboxylic acid (COOH) or amide functionalities were characterised electrochemically after drop-coating onto a boron-doped diamond (BDD) electrode. In the presence of the outer-sphere redox probe ferrocenemethanol there was no discernible difference in electrochemical response between the clean BDD and GNF-modified electrodes. When ferricyanide or hydroquinone were used as redox probes there was a marked difference in response at the electrode modified with COOH-terminated GNF in comparison to the unmodified BDD and amide-terminated GNF electrode. The response of the COOH-terminated GNF electrode was highly pH dependent, with the most dramatic differences in response noted at pH < 8. This pH range coincides with partial protonation of the carboxylic acid groups as determined by titration. The acid edge groups occupy a range of bonding environments and are observed to undergo deprotonation over a pH range ca. 3.7 to 8.3. The protonation state of the GNF influences the oxidation mechanism of hydroquinone and in particular the number of solution protons involved in the reaction mechanism. The voltammetric response of ferricyanide is very inhibited by the presence of COOH-terminated GNF at pH < 8, especially in low ionic strength solution. While the protonation state of the GNF is clearly a major factor in the observed response, the exact role of the acid group in the redox process has not been firmly established. It may be that the ferricyanide species is unstable in the solution environment surrounding the GNF, where dynamic protonation equilibria are at play, perhaps through disruption to ion pairing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA