RESUMO
Understanding the critical soil moisture (SM) threshold (θcrit ) of plant water stress and land surface energy partitioning is a basis to evaluate drought impacts and improve models for predicting future ecosystem condition and climate. Quantifying the θcrit across biomes and climates is challenging because observations of surface energy fluxes and SM remain sparse. Here, we used the latest database of eddy covariance measurements to estimate θcrit across Europe by evaluating evaporative fraction (EF)-SM relationships and investigating the covariance between vapor pressure deficit (VPD) and gross primary production (GPP) during SM dry-down periods. We found that the θcrit and soil matric potential threshold in Europe are 16.5% and -0.7 MPa, respectively. Surface energy partitioning characteristics varied among different vegetation types; EF in savannas had the highest sensitivities to SM in water-limited stage, and the lowest in forests. The sign of the covariance between daily VPD and GPP consistently changed from positive to negative during dry-down across all sites when EF shifted from relatively high to low values. This sign of the covariance changed after longer period of SM decline in forests than in grasslands and savannas. Estimated θcrit from the VPD-GPP covariance method match well with the EF-SM method, showing this covariance method can be used to detect the θcrit . We further found that soil texture dominates the spatial variability of θcrit while shortwave radiation and VPD are the major drivers in determining the spatial pattern of EF sensitivities. Our results highlight for the first time that the sign change of the covariance between daily VPD and GPP can be used as an indicator of how ecosystems transition from energy to SM limitation. We also characterized the corresponding θcrit and its drivers across diverse ecosystems in Europe, an essential variable to improve the representation of water stress in land surface models.
Assuntos
Ecossistema , Solo , Desidratação , Secas , Florestas , HumanosRESUMO
Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).
Assuntos
Carbono/metabolismo , Clima , Ecossistema , Atividades Humanas , Árvores/metabolismo , Nitrogênio/metabolismoRESUMO
The year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe's developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.
Assuntos
Carbono , Florestas , Temperatura , Carbono/análise , Europa (Continente) , Temperatura Alta , Secas , Mudança ClimáticaRESUMO
Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) - the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015-2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.
RESUMO
⢠It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. ⢠Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. ⢠We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. ⢠Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Temperatura , Aclimatação , Dióxido de Carbono/efeitos da radiação , Mudança Climática , Plantas/efeitos da radiação , Chuva , Energia SolarRESUMO
Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. Respired (13) CO2 from trunks was tracked at different heights using tunable diode laser absorption spectrometry to determine time lags and the velocity of carbon transfer (V). The isotope composition of phloem extracts was measured on several occasions after labelling and used to estimate the rate constant of phloem sap outflux (kP ). Pulse labelling together with high-frequency measurement of the isotope composition of trunk CO2 efflux is a promising tool for studying phloem transport in the field. Seasonal variability in V was predicted in pine and oak by bivariate linear regressions with air temperature and soil water content. V differed among the three species consistently with known differences in phloem anatomy between broadleaf and coniferous trees. V increased with tree diameter in oak and beech, reflecting a nonlinear increase in volumetric flow with increasing bark cross-sectional area, which suggests changes in allocation pattern with tree diameter in broadleaf species. Discrepancies between V and kP indicate vertical changes in functional phloem properties.
Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Marcação por Isótopo , Estações do Ano , Árvores/metabolismo , Biomassa , Isótopos de Carbono/metabolismo , Respiração Celular , Fagus/metabolismo , Cinética , Floema/metabolismo , Pinus/metabolismo , Casca de Planta/anatomia & histologia , Extratos Vegetais/metabolismo , Quercus/metabolismo , Especificidade da Espécie , Temperatura , Fatores de TempoRESUMO
⢠Photosynthetic carbon (C) isotope discrimination (Δ(Α)) labels photosynthates (δ(A) ) and atmospheric CO(2) (δ(a)) with variable C isotope compositions during fluctuating environmental conditions. In this context, the C isotope composition of respired CO(2) within ecosystems is often hypothesized to vary temporally with Δ(Α). ⢠We investigated the relationship between Δ(Α) and the C isotope signals from stem (δ(W)), soil (δ(S)) and ecosystem (δ(E)) respired CO(2) to environmental fluctuations, using novel tuneable diode laser absorption spectrometer instrumentation in a mature maritime pine forest. ⢠Broad seasonal changes in Δ(Α) were reflected in δ(W,) δ(S) and δ(E). However, respired CO(2) signals had smaller short-term variations than Δ(A) and were offset and delayed by 2-10 d, indicating fractionation and isotopic mixing in a large C pool. Variations in δ(S) did not follow Δ(A) at all times, especially during rainy periods and when there is a strong demand for C allocation above ground. ⢠It is likely that future isotope-enabled vegetation models will need to develop transfer functions that can account for these phenomena in order to interpret and predict the isotopic impact of biosphere gas exchange on the C isotope composition of atmospheric CO(2).
Assuntos
Ecossistema , Fotossíntese/fisiologia , Caules de Planta/metabolismo , Solo/química , Aerobiose , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Ritmo Circadiano/fisiologia , Estações do AnoRESUMO
We have developed a new airborne UV lidar for the forest canopy and deployed it in the Landes forest (France). It is the first one that: (i) operates at 355 nm for emitting energetic pulses of 16 mJ at 20 Hz while fulfilling eye-safety regulations and (ii) is flown onboard an ultra-light airplane for enhanced flight flexibility. Laser footprints at ground level were 2.4 m wide for a flying altitude of 300 m. Three test areas of ≈ 500 × 500 m(2) with Maritime pines of different ages were investigated. We used a threshold method adapted for this lidar to accurately extract from its waveforms detailed forest canopy vertical structure: canopy top, tree crown base and undergrowth heights. Good detection sensitivity enabled the observation of ground returns underneath the trees. Statistical and one-to-one comparisons with ground measurements by field foresters indicated a mean absolute accuracy of ≈ 1 m. Sensitivity tests on detection threshold showed the importance of signal to noise ratio and footprint size for a proper detection of the canopy vertical structure. This UV-lidar is intended for future innovative applications of simultaneous observation of forest canopy, laser-induced vegetation fluorescence and atmospheric aerosols.
Assuntos
Agricultura Florestal/métodos , Lasers , Razão Sinal-Ruído , Árvores/fisiologia , Desenho de Equipamento , Agricultura Florestal/instrumentação , França , Modelos Teóricos , Pinus/fisiologia , Sensibilidade e Especificidade , Raios UltravioletaRESUMO
Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
Assuntos
Atmosfera/análise , Mudança Climática , Secas , Fazendas , Florestas , Pradaria , Áreas Alagadas , Europa (Continente)RESUMO
The study presents a comparison of two phloem sugar extraction methods. The amount of phloem sugar extracted and the carbon isotope composition (delta(13)C) of the total extracts and of the main phloem compounds separated by high-performance liquid chromatography (sucrose, glucose, fructose and pinitol) are compared. These two phloem sap extraction methods are exudation in distilled water and a new method using centrifugation, which avoids the addition of any solvent. We applied both extraction methods on phloem discs sampled from 38-year-old Pinus pinaster trees in south-western France throughout the period from June 2007 to December 2008 on different time-scales: hourly, daily and monthly. We found that the centrifugation method systematically extracted ca. 50% less compounds from the phloem discs than the exudation method. In addition, the two extraction methods provided similar delta(13)C values of the total extracts, but the values obtained by the exudation method were 0.6 per thousand more negative than those calculated from the mass balance using the individual constituents. Over the growing season, both extraction methods exhibited lower total sugar content and more (13)C-enriched phloem sap in summer compared with winter values. These findings suggest that both extraction methods can be applied to study the carbon isotope composition of phloem sap, and the centrifugation method has the advantage that no solvent has to be added. The exudation method, however, is more appropriate for the quantification of the amounts of phloem sugars.
Assuntos
Carboidratos/análise , Isótopos de Carbono/análise , Centrifugação/métodos , Fracionamento Químico/métodos , Floema/química , Pinus/química , Pinus/crescimento & desenvolvimento , Extratos Vegetais/análise , Estações do AnoRESUMO
During land-aquatic transfer, carbon (C) and inorganic nutrients (IN) are transformed in soils, groundwater, and at the groundwater-surface water interface as well as in stream channels and stream sediments. However, processes and factors controlling these transfers and transformations are not well constrained, particularly with respect to land use effect. We compared C and IN concentrations in shallow groundwater and first-order streams of a sandy lowland catchment dominated by two types of land use: pine forest and maize cropland. Contrary to forest groundwater, crop groundwater exhibited oxic conditions all-year round as a result of higher evapotranspiration and better lateral drainage that decreased the water table below the organic-rich soil horizon, prevented the leaching of soil-generated dissolved organic carbon (DOC) in groundwater, and thus limited consumption of dissolved oxygen (O2). In crop groundwater, oxic conditions inhibited denitrification and methanogenesis resulting in high nitrate (NO3-; on average 1140⯱â¯485⯵molâ¯L-1) and low methane (CH4; 40⯱â¯25â¯nmolâ¯L-1) concentrations. Conversely, anoxic conditions in forest groundwater led to lower NO3- (25⯱â¯40⯵molâ¯L-1) and higher CH4 (1770⯱â¯1830â¯nmolâ¯L-1) concentrations. The partial pressure of carbon dioxide (pCO2; 30,650⯱â¯11,590â¯ppmv) in crop groundwater was significantly lower than in forest groundwater (50,630⯱â¯26,070â¯ppmv), and was apparently caused by the deeper water table delaying downward diffusion of soil CO2 to the water table. In contrast, pCO2 was not significantly different in crop (4480⯱â¯2680â¯ppmv) and forest (4900⯱â¯4500â¯ppmv) streams, suggesting faster degassing in forest streams resulting from greater water turbulence. Although NO3-concentrations indicated that denitrification occurred in riparian-forest groundwater, crop streams nevertheless exhibited important signs of spring and summer eutrophication such as the development of macrophytes. Stream eutrophication favored development of anaerobic conditions in crop stream sediments, as evidenced by increased ammonia (NH4+) and CH4 in stream waters and concomitant decreased in NO3- concentrations as a result of sediment denitrification. In crop streams, dredging and erosion of streambed sediments during winter sustained high concentration of particulate organic C, NH4+ and CH4. In forest streams, dissolved iron (Fe2+), NH4+ and CH4 were negatively correlated with O2 reflecting the gradual oxygenation of stream water and associated oxidations of Fe2+, NH4+ and CH4. The results overall showed that forest groundwater behaved as source of CO2 and CH4 to streams, the intensity depending on the hydrological connectivity among soils, groundwater, and streams. CH4 production was prevented in cropland in soils and groundwater, however crop groundwater acted as a source of CO2 to streams (but less so than forest groundwater). Conversely, in streams, pCO2 was not significantly affected by land use while CH4 production was enhanced by cropland. At the catchment scale, this study found substantial biogeochemical heterogeneity in C and IN concentrations between forest and crop waters, demonstrating the importance of including the full vegetation-groundwater-stream continuum when estimating land-water fluxes of C (and nitrogen) and attempting to understand their spatial and temporal dynamics.
Assuntos
Carbono/análise , Monitoramento Ambiental , Fazendas , Florestas , Água Subterrânea/análise , Rios , Embriófitas/fisiologia , França , Pinus/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimentoRESUMO
In the version of this Article originally published, the wrong Supplementary Information pdf was uploaded, in which the figures did not correspond with those mentioned in the main text and the R code was not presented properly. This has now been replaced.
RESUMO
The total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation (GPPsat), and its interannual variability (IAV) is propagated to the net land-atmosphere exchange of CO2. Given the importance of understanding the IAV in CO2 fluxes for improving the predictability of the global carbon cycle, we have tested a range of alternative hypotheses to identify potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. Our results show that while the IAV in GPPsat within sites is closely related to air temperature and soil water availability fluctuations, the magnitude of IAV in GPPsat is related to stand age and biodiversity (R2 = 0.55, P < 0.0001). We find that the IAV of GPPsat is greatly reduced in older and more diverse forests, and is higher in younger forests with few dominant species. Older and more diverse forests seem to dampen the effect of climate variability on the carbon cycle irrespective of forest type. Preserving old forests and their diversity would therefore be beneficial in reducing the effect of climate variability on Earth's forest ecosystems.
RESUMO
The total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation (GPPsat), and its interannual variability (IAV) is propagated to the net land-atmosphere exchange of CO2. Given the importance of understanding the IAV in CO2 fluxes for improving the predictability of the global carbon cycle, we have tested a range of alternative hypotheses to identify potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. Our results show that while the IAV in GPPsat within sites is closely related to air temperature and soil water availability fluctuations, the magnitude of IAV in GPPsat is related to stand age and biodiversity (R2 = 0.55, P < 0.0001). We find that the IAV of GPPsat is greatly reduced in older and more diverse forests, and is higher in younger forests with few dominant species. Older and more diverse forests seem to dampen the effect of climate variability on the carbon cycle irrespective of forest type. Preserving old forests and their diversity would therefore be beneficial in reducing the effect of climate variability on Earth's forest ecosystems.
RESUMO
We modeled the effects of climate change and two forest management scenarios on wood production and forest carbon balance in French forests using process-based models of forest growth. We combined data from the national forest inventory and soil network survey, which were aggregated over a 50 x 50-km grid, i.e., the spatial resolution of the climate scenario data. We predicted and analyzed the climate impact on potential forest production over the period 1960-2100. All models predicted a slight increase in potential forest yield until 2030-2050, followed by a plateau or a decline around 2070-2100, with overall, a greater increase in yield in northern France than in the south. Gross and net primary productivities were more negatively affected by soil water and atmospheric water vapor saturation deficits in western France because of a more pronounced shift in seasonal rainfall from summer to winter. The rotation-averaged values of carbon flux and production for different forest management options were estimated during four years (1980, 2015, 2045 and 2080). Predictions were made using a two-dimensional matrix covering the range of local soil and climate conditions. The changes in ecosystem fluxes and forest production were explained by the counterbalancing effect of rising CO2 concentration and increasing water deficit. The effect of climate change decreased with rotation length from short rotations with high production rates and low standing biomasses to long rotations with low productivities and greater standing biomasses. Climate effects on productivity, both negative and positive, were greatest on high fertility sites. Forest productivity in northern France was enhanced by climate change, increasingly from west to east, whereas in the southwestern Atlantic region, productivity was reduced by climate change to an increasing degree from west to east.
Assuntos
Efeito Estufa , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Simulação por Computador , Ecossistema , Agricultura Florestal , França , Árvores/anatomia & histologia , Árvores/fisiologia , Água/metabolismo , Madeira/anatomia & histologia , Madeira/crescimento & desenvolvimento , Madeira/fisiologiaRESUMO
We investigated the radial variation of sap flow within sapwood below the live crown in relation to tree size in 10-, 32-, 54- and 91-year-old maritime pine stands (Pinus pinaster Ait.). Radial variations were determined with two thermal dissipation sensors; one measured sap flux in the outer 20 mm of the xylem (Jref), whereas the other was moved radially across the sapwood in 20-mm increments to measure sap flux at multiple depths (Jref). For all tree sizes, sap flow ratios (Ri = JiJref (-1)) declined with increasing sapwood depth, but the decrease was steeper in trees with large diameters. Correction factors (C) were calculated to extrapolate Jref for an estimate of whole-tree sap flux. A negative linear relationship was established between stem diameter and C, the latter ranging from 0.6 to 1.0. We found that neglecting these radial corrections in 10-, 32-, 54- and 91-year-old trees would lead to overestimation of stand transpiration by 4, 14, 26 and 47%, respectively. Therefore, it is necessary to account for the differential radial profiles of sap flow in relation to tree size when comparing tree transpiration and hydraulic properties among trees differing in size.
Assuntos
Pinus/fisiologia , Árvores/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Água/metabolismoRESUMO
The relationship between maintenance respiration (Rm) of woody organs and their structural characteristics was explored in adult Pinus pinaster Ait. trees. We measured Rm on 75 stem and branch segments of different ages (from 3 to 24 years) and diameters (from 1 to 35 cm). The temperature response of Rm was derived from field measurements based on a classical exponential function with Q10 = 2.13. Relationships between Rm and the dimensions of the woody organs were analyzed under controlled conditions in the laboratory. The surface area of a woody organ was a better predictor of Rm than volume, but surface area failed to account for the observed within-tree variability of Rm among stems, branches and twigs. Two simple models were proposed to predict the variability of Rm at 15 degrees C in an adult tree. Model 1, a linear function model based on the dry mass and nitrogen concentration of sapwood and phloem tissues, explained most of the variability of Rm in branches and stems (R2 = 0.97). We concluded that the respective contributions of the phloem and sapwood depend on the location and diameter of the woody organ. Model 2, a power-law function model based on the length, diameter and age of the sample, explained the same variance of Rm as Model 1 and is appropriate for scaling Rm to the stand level. Models 1 and 2 appear to explain a larger variability of Rm than models based on stem area or sapwood mass.
Assuntos
Pinus/fisiologia , Caules de Planta/fisiologia , Árvores/fisiologia , Respiração Celular/fisiologia , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismoRESUMO
The maximum light use efficiency (LUE = gross primary production (GPP)/absorbed photosynthetic photon flux density (aPPFD)) of plant canopies has been reported to vary spatially and some of this variation has previously been attributed to plant species differences. The canopy nitrogen concentration [N] can potentially explain some of this spatial variation. However, the current paradigm of the N-effect on photosynthesis is largely based on the relationship between photosynthetic capacity (A(max)) and [N], i.e., the effects of [N] on photosynthesis rates appear under high PPFD. A maximum LUE-[N] relationship, if it existed, would influence photosynthesis in the whole range of PPFD. We estimated maximum LUE for 14 eddy-covariance forest sites, examined its [N] dependency and investigated how the [N]-maximum LUE dependency could be incorporated into a GPP model. In the model, maximum LUE corresponds to LUE under optimal environmental conditions before light saturation takes place (the slope of GPP vs. PPFD under low PPFD). Maximum LUE was higher in deciduous/mixed than in coniferous sites, and correlated significantly with canopy mean [N]. Correlations between maximum LUE and canopy [N] existed regardless of daily PPFD, although we expected the correlation to disappear under low PPFD when LUE was also highest. Despite these correlations, including [N] in the model of GPP only marginally decreased the root mean squared error. Our results suggest that maximum LUE correlates linearly with canopy [N], but that a larger body of data is required before we can include this relationship into a GPP model. Gross primary production will therefore positively correlate with [N] already at low PPFD, and not only at high PPFD as is suggested by the prevailing paradigm of leaf-level A(max)-[N] relationships. This finding has consequences for modelling GPP driven by temporal changes or spatial variation in canopy [N].
Assuntos
Luz , Nitrogênio/metabolismo , Fotossíntese , Árvores/metabolismo , Nitrogênio/análise , Árvores/efeitos da radiaçãoRESUMO
The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations.