Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 8350-8362, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35543429

RESUMO

The pandemic revealed significant gaps in our understanding of the antiviral potential of porous textiles used for personal protective equipment and nonporous touch surfaces. What is the fate of a microbe when it encounters an abiotic surface? How can we change the microenvironment of materials to improve antimicrobial properties? Filling these gaps requires increasing data generation throughput. A method to accomplish this leverages the use of the enveloped bacteriophage ϕ6, an adjustable spacing multichannel pipette, and the statistical design opportunities inherent in the ordered array of the 24-well culture plate format, resulting in a semi-automated small drop assay. For 100 mm2 nonporous coupons of Cu and Zn, the reduction in ϕ6 infectivity fits first-order kinetics, resulting in half-lives (T50) of 4.2 ± 0.1 and 29.4 ± 1.6 min, respectively. In contrast, exposure to stainless steel has no significant effect on infectivity. For porous textiles, differences associated with composition, color, and surface treatment of samples are detected within 5 min of exposure. Half-lives for differently dyed Zn-containing fabrics from commercially available masks ranged from 2.1 ± 0.05 to 9.4 ± 0.2 min. A path toward full automation and the application of machine learning techniques to guide combinatorial material engineering is presented.


Assuntos
Antivirais , Bacteriófagos , Porosidade , Têxteis
2.
Adv Exp Med Biol ; 1260: 175-195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211313

RESUMO

Augmented Reality (AR) applied to surgical guidance is gaining relevance in clinical practice. AR-based image overlay surgery (i.e. the accurate overlay of patient-specific virtual images onto the body surface) helps surgeons to transfer image data produced during the planning of the surgery (e.g. the correct resection margins of tissue flaps) to the operating room, thus increasing accuracy and reducing surgery times. We systematically reviewed 76 studies published between 2004 and August 2018 to explore which existing tracking and registration methods and technologies allow healthcare professionals and researchers to develop and implement these systems in-house. Most studies used non-invasive markers to automatically track a patient's position, as well as customised algorithms, tracking libraries or software development kits (SDKs) to compute the registration between patient-specific 3D models and the patient's body surface. Few studies combined the use of holographic headsets, SDKs and user-friendly game engines, and described portable and wearable systems that combine tracking, registration, hands-free navigation and direct visibility of the surgical site. Most accuracy tests included a low number of subjects and/or measurements and did not normally explore how these systems affect surgery times and success rates. We highlight the need for more procedure-specific experiments with a sufficient number of subjects and measurements and including data about surgical outcomes and patients' recovery. Validation of systems combining the use of holographic headsets, SDKs and game engines is especially interesting as this approach facilitates an easy development of mobile AR applications and thus the implementation of AR-based image overlay surgery in clinical practice.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Algoritmos , Humanos , Imageamento Tridimensional , Software
3.
Appl Microbiol Biotechnol ; 99(16): 6831-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25895086

RESUMO

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture. It was found that the attachment of S. aureus cells was not restricted on surfaces that had an average roughness (S a) less than 0.5 nm. In contrast, P. aeruginosa cells were found to be unable to colonise surfaces possessing an average roughness below 1 nm, unless sharp nanoprotrusions of approximately 20 nm in size and spaced 35.0 nm apart were present. It is postulated that the enhanced attachment of P. aeruginosa onto the surfaces possessing these nanoprotrusions was facilitated by the ability of the cell membrane to stretch over the tips of the nanoprotrusions as confirmed through computer simulation, together with a concomitant increase in the level of extracellular polymeric substance (EPS) being produced by the bacterial cells.


Assuntos
Aderência Bacteriana , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Propriedades de Superfície , Titânio , Humanos , Microscopia de Força Atômica
4.
Int J Comput Assist Radiol Surg ; 16(6): 955-966, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33856643

RESUMO

PURPOSE: Emerging holographic headsets can be used to register patient-specific virtual models obtained from medical scans with the patient's body. Maximising accuracy of the virtual models' inclination angle and position (ideally, ≤ 2° and ≤ 2 mm, respectively, as in currently approved navigation systems) is vital for this application to be useful. This study investigated the accuracy with which a holographic headset registers virtual models with real-world features based on the position and size of image markers. METHODS: HoloLens® and the image-pattern-recognition tool Vuforia Engine™ were used to overlay a 5-cm-radius virtual hexagon on a monitor's surface in a predefined position. The headset's camera detection of an image marker (displayed on the monitor) triggered the rendering of the virtual hexagon on the headset's lenses. 4 × 4, 8 × 8 and 12 × 12 cm image markers displayed at nine different positions were used. In total, the position and dimensions of 114 virtual hexagons were measured on photographs captured by the headset's camera. RESULTS: Some image marker positions and the smallest image marker (4 × 4 cm) led to larger errors in the perceived dimensions of the virtual models than other image marker positions and larger markers (8 × 8 and 12 × 12 cm). ≤ 2° and ≤ 2 mm errors were found in 70.7% and 76% of cases, respectively. CONCLUSION: Errors obtained in a non-negligible percentage of cases are not acceptable for certain surgical tasks (e.g. the identification of correct trajectories of surgical instruments). Achieving sufficient accuracy with image marker sizes that meet surgical needs and regardless of image marker position remains a challenge.


Assuntos
Imageamento Tridimensional/métodos , Cirurgia Assistida por Computador/métodos , Humanos , Reprodutibilidade dos Testes
5.
PLoS One ; 15(9): e0237463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970688

RESUMO

Titanium is essentially absent from biological systems yet reliably integrates into bone. To achieve osseointegration, titanium must activate biological processes without entering cells, defining it as a bio-activating material. Nanostructuring bulk titanium reduces grain size, increases strength, and improves other quantifiable physical properties, including cytocompatibility. The biological processes activated by increasing grain boundary availability were detected with total RNA-sequencing in mouse pre-osteoblasts grown for 72 hours on nanometrically smooth substrates of either coarse grain or nanostructured ultrafine grain titanium. The average grain boundary length under cells on the conventional coarse grain substrates is 273.0 µm, compared to 70,881.5 µm for cells adhered to the nanostructured ultrafine grain substrates; a 260-fold difference. Cells on both substrates exhibit similar expression profiles for genes whose products are critical for mechanosensation and transduction of cues that trigger osteoconduction. Biological process Gene Ontology term enrichment analysis of differentially expressed genes reveals that cell cycle, chromatin modification, telomere maintenance, and RNA metabolism processes are upregulated on ultrafine grain titanium. Processes related to immune response, including apoptosis, are downregulated. Tumor-suppressor genes are upregulated while tumor-promoting genes are downregulated. Upregulation of genes involved in chromatin remodeling and downregulation of genes under the control of the peripheral circadian clock implicate both processes in the transduction of mechanosensory information. Non-coding RNAs may also play a role in the response. Merging transcriptomics with well-established mechanobiology principles generates a unified model to explain the bio-activating properties of titanium. The modulation of processes is accomplished through chromatin remodeling in which the nucleus responds like a rheostat to grain boundary concentration. This convergence of biological and materials science reveals a pathway toward understanding the biotic-abiotic interface and will inform the development of effective bio-activating and bio-inactivating materials.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Nanoestruturas/química , Osteoblastos/citologia , Titânio/química , Animais , Linhagem Celular , Teste de Materiais , Mecanotransdução Celular , Camundongos , Osseointegração , Osteoblastos/metabolismo , Análise de Sequência de RNA , Propriedades de Superfície , Transcriptoma
6.
Mater Res Lett ; 8(6): 239-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477832

RESUMO

Studies since 2004 have shown that the cytocompatibility of ultrafine grain (UG) commercial purity (CP) titanium exceeds that of coarse grain (CG) CP titanium (Ti) by 30% to 20-fold. To isolate the factors affecting this large reported variability of CP titanium's cytocompatibility, discs of UG and CG titanium were fabricated with controlled texture and roughness. The discs were seeded with MC3T3-E1 pre-osteoblastic cells and cultured for 72 h. The proliferation of cells on polished UG-Ti exceeded unpolished CG-Ti 3.04-fold. Cell proliferation was found to correlate with a new biophysical parameter, the average grain boundary length per surface-attached cell.

7.
Int J Radiat Oncol Biol Phys ; 104(3): 530-539, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851351

RESUMO

PURPOSE: Hyperbaric oxygen (HBO) has been advocated in the prevention and treatment of osteoradionecrosis (ORN) of the jaw after head and neck radiation therapy, but supporting evidence is weak. The aim of this randomized trial was to establish the benefit of HBO in the prevention of ORN after high-risk surgical procedures to the irradiated mandible. METHODS AND MATERIALS: HOPON was a randomized, controlled, phase 3 trial. Participants who required dental extractions or implant placement in the mandible with prior radiation therapy >50 Gy were recruited. Eligible patients were randomly assigned 1:1 to receive or not receive HBO. All patients received chlorhexidine mouthwash and antibiotics. For patients in the HBO arm, oxygen was administered in 30 daily dives at 100% oxygen to a pressure of 2.4 atmospheres absolute for 80 to 90 minutes. The primary outcome measure was the diagnosis of ORN 6 months after surgery, as determined by a blinded central review of clinical photographs and radiographs. The secondary endpoints included grade of ORN, ORN at other time points, acute symptoms, pain, and quality of life. RESULTS: A total of 144 patients were randomized, and data from 100 patients were analyzed for the primary endpoint. The incidence of ORN at 6 months was 6.4% and 5.7% for the HBO and control groups, respectively (odds ratio, 1.13; 95% confidence interval, 0.14-8.92; P = 1). Patients in the hyperbaric arm had fewer acute symptoms but no significant differences in late pain or quality of life. Dropout was higher in the HBO arm, but the baseline characteristics of the groups that completed the trial were comparable between the 2 arms. CONCLUSIONS: The low incidence of ORN makes recommending HBO for dental extractions or implant placement in the irradiated mandible unnecessary. These findings are in contrast with a recently published Cochrane review and previous trials reporting rates of ORN (non-HBO) of 14% to 30% and challenge a long-established standard of care.


Assuntos
Oxigenoterapia Hiperbárica , Mandíbula/efeitos da radiação , Osteorradionecrose/prevenção & controle , Extração Dentária/efeitos adversos , Antibacterianos/uso terapêutico , Área Sob a Curva , Clorexidina/uso terapêutico , Feminino , Humanos , Oxigenoterapia Hiperbárica/métodos , Incidência , Masculino , Mandíbula/cirurgia , Pessoa de Meia-Idade , Antissépticos Bucais/uso terapêutico , Osteorradionecrose/epidemiologia , Pacientes Desistentes do Tratamento/estatística & dados numéricos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA