RESUMO
Studies on the piezoelectric materials capable of efficiently outputting high electrostrains at low electric fields are driven by the demand for precise actuation in a wide range of applications. Large electrostrains of piezoceramics in operation require high driving fields, which limits their practical application due to undesirable nonlinearities and high energy consumption. Herein, a strategy is developed to enhance the electrostrains of piezoceramics while maintaining low hysteresis by incorporating lead magnesium niobate relaxors into lead zirconate titanium at the morphotropic phase boundary. An ultrahigh inverse piezoelectric coefficient d 33 * of 1380 pm/V with a reduced hysteresis of 11.5% is achieved under a low electric field of 1 kV/mm, outperforming the major lead-based piezoelectric materials. In situ synchrotron X-ray diffraction and domain wall dynamics characterization with sub-microsecond temporal resolution reveal that the outstanding performances originate from facilitated domain wall movement, which in turn is due to reduced lattice distortion and miniaturized domain structures. These findings not only address the pending challenges of effective actuation under reduced driving conditions but also lay the foundation for a more systematic approach to exploring the origin of large electrostrains.
RESUMO
Domain engineering in ferroelectrics endows flexibility for different functional applications. Whereas the domain engineering strategy for single crystals and thin films is diverse, there is only a limited number of strategies for bulk ceramics. Here, a domain engineering strategy for achieving a compact domain architecture with increased domain-wall density in (K,Na)NbO3 (KNN)-based ferroelectric ceramics via mesoscopic chemical inhomogeneity (MCI) is developed. The MCI-induced interfaces can effectively hinder domain continuity and modify the domain configuration. Besides, the MCI effect also results in diffused phase transitions, which is beneficial for achieving enhanced thermal stability. Modulation of chemical inhomogeneity demonstrates great potential for engineering desirable domain configuration and properties in ferroelectric ceramics. Additionally, the MCI can be easily controlled by regulating the processing condition during solid-state synthesis, which is advantageous to industrial production.