Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457185

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common and fatal malignancy with an increasing incidence worldwide. Over the past decade, concurrent chemoradiotherapy (CCRT) with or without surgery is an emerging therapeutic approach for locally advanced ESCC. Unfortunately, many patients exhibit poor response or develop acquired resistance to CCRT. Once resistance occurs, the overall survival rate drops down rapidly and without proper further treatment options, poses a critical clinical challenge for ESCC therapy. Here, we utilized lab-created CCRT-resistant cells as a preclinical study model to investigate the association of chemoradioresistantresistance with miRNA-mediated cell plasticity alteration, and to determine whether reversing EMT status can re-sensitize refractory cancer cells to CCRT response. During the CCRT treatment course, refractory cancer cells adopted the conversion of epithelial to mesenchymal phenotype; additionally, miR-200 family members were found significantly down-regulated in CCRT resistance cells by miRNA microarray screening. Down-regulated miR-200 family in CCRT resistance cells suppressed E-cadherin expression through snail and slug, and accompany with an increase in N-cadherin. Rescuing expressions of miR-200 family members in CCRT resistance cells, particularly in miR-200b and miR-200c, could convert cells to epithelial phenotype by increasing E-cadherin expression and sensitize cells to CCRT treatment. Conversely, the suppression of miR-200b and miR-200c in ESCC cells attenuated E-cadherin, and that converted cells to mesenchymal type by elevating N-cadherin expression, and impaired cell sensitivity to CCRT treatment. Moreover, the results of ESCC specimens staining established the clinical relevance that higher N-cadherin expression levels associate with the poor CCRT response outcome in ESCC patients. Conclusively, miR-200b and miR-200c can modulate the conversion of epithelial-mesenchymal phenotype in ESCC, and thereby altering the response of cells to CCRT treatment. Targeting epithelial-mesenchymal conversion in acquired CCRT resistance may be a potential therapeutic option for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Plasticidade Celular , Quimiorradioterapia/métodos , Transição Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/terapia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
2.
FASEB J ; 34(9): 12127-12146, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686865

RESUMO

Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-ß peptide (Aß). The production of Aß is mediated by sequential proteolysis of amyloid precursor protein (APP) by ß- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aß production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aß by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aß. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aß production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ratos
3.
J Neuroinflammation ; 17(1): 185, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532282

RESUMO

BACKGROUND: Inflammation is a common pathophysiological trait found in both hypertension and cardiac vascular disease. Recent evidence indicates that fractalkine (FKN) and its receptor CX3CR1 have been linked to inflammatory response in the brain of hypertensive animal models. Here, we investigated the role of CX3CR1-microglia in nitric oxide (NO) generation during chronic inflammation and systemic blood pressure recovery in the nucleus tractus solitarii (NTS). METHODS: The hypertensive rat model was used to study the role of CX3CR1-microglia in NTS inflammation following hypertension induction by oral administration of 10% fructose water. The systolic blood pressure was measured by tail-cuff method of non-invasive blood pressure. The CX3CR1 inhibitor AZD8797 was administered intracerebroventricularly (ICV) in the fructose-induced hypertensive rat. Using immunoblotting, we studied the nitric oxide synthase signaling pathway, NO concentration, and the levels of FKN and CX3CR1, and pro-inflammatory cytokines were analyzed by immunohistochemistry staining. RESULTS: The level of pro-inflammatory cytokines IL-1ß, IL-6, TNF-α, FKN, and CX3CR1 were elevated two weeks after fructose feeding. AZD8797 inhibited CX3CR1-microglia, which improved the regulation of systemic blood pressure and NO generation in the NTS. We also found that IL-1ß, IL-6, and TNF-α levels were recovered by AZD8797 addition. CONCLUSION: We conclude that CX3CR1-microglia represses the nNOS signaling pathway and promotes chronic inflammation in fructose-induced hypertension. Collectively, our results reveal the role of chemokines such as IL-1ß, IL-6, and TNF-α in NTS neuroinflammation with the involvement of FKN and CX3CR1.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Hipertensão/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Núcleo Solitário/patologia , Animais , Pressão Sanguínea , Citocinas/metabolismo , Frutose/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/complicações , Inflamação/etiologia , Ratos , Ratos Endogâmicos WKY , Núcleo Solitário/metabolismo
4.
Breast Cancer Res ; 19(1): 133, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258605

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) lacks both early detection biomarkers and viable targeted therapeutics. Moreover, chemotherapy only produces 20-30% pathologic complete response. Because miRNAs are frequently dysregulated in breast cancer and have broad tissue effects, individual or combinations of circulating miRNAs may serve as ideal diagnostic, predictive or prognostic biomarkers, as well as therapeutic targets. Understanding the role and mechanism of dysregulated miRNAs in TNBC may help to develop novel diagnostic and prognostic strategy for TNBC patients. METHODS: The miRNA array profiles of 1299 breast cancer patients were collected from the Metabric database and subjected to analysis of the altered miRNAs between TNBC and non-TNBC. In Student's t-test and Kaplan-Meier analysis, four upregulated miRNAs correlated with poor survival in TNBC but not in non-TNBC. Four miRNAs were manipulated in multiple cell lines to investigate their functional role in carcinogenesis. From these results, we studied miR-105 and miR-93-3p in greater detail. The level of miR-105 and miR-93-3p were evaluated in 25 breast cancer tumor tissues. In addition, the diagnostic utility of circulating miR-105 and miR-93-3p were examined in 12 normal and 118 breast cancer plasma samples by ROC curve construction. RESULTS: miR-105 and miR-93-3p were upregulated and correlated with poor survival in TNBC patients. Both miR-105 and miR-93-3p were found to activate Wnt/ß-catenin signaling by downregulation of SFPR1. By this action, stemness, chemoresistance, and metastasis were promoted. Importantly, the combination of circulating miR-105/93-3p may serve as a powerful biomarker for TNBC, even in early-stage disease. CONCLUSIONS: miR-105/93-3p activates Wnt/ß-catenin signaling by downregulating SFRP1 and thereby promotes stemness, chemoresistance, and metastasis in TNBC cells. Most importantly, combined circulating miR-105/93-3p levels represent a prime candidate for development into a diagnostic biomarker for both early- and late-stage TNBC.


Assuntos
Biomarcadores Tumorais , MicroRNA Circulante , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/farmacologia , Estudos de Casos e Controles , Feminino , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/sangue , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Transcriptoma , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Via de Sinalização Wnt
5.
Am J Respir Crit Care Med ; 193(8): 869-80, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26595459

RESUMO

RATIONALE: Non-small cell lung cancer (NSCLC) carries a poor survival rate mainly because of metastasis. However, the molecular mechanisms that govern NSCLC metastasis have not been described. Because huntingtin-interacting protein-1 (HIP1) is known to play a role in tumorigenesis, we tested the involvement of HIP1 in NSCLC progression and metastasis. OBJECTIVES: HIP1 expression was measured in human NSCLC tumors, and correlation with survival outcome was evaluated. Furthermore, we investigated the ability of HIP1 to suppress metastasis. The molecular mechanism by which HIP1 contributes to suppress metastasis was investigated. METHODS: We used tissue arrays containing samples from 121 patients with NSCLC to analyze HIP1 expression by immunohistochemistry. To investigate the role of HIP1 expression on metastasis, we evaluated cellular mobility, migration, and invasion using lung adenocarcinoma (AdCA) cells with modified HIP1 expression levels. The human disease mouse models with the same cells were applied to evaluate the HIP1 suppressing metastasis and its mechanism in vivo. MEASUREMENTS AND MAIN RESULTS: HIP1 expression in AdCA progression was found to be an early-stage prognostic biomarker, with low expression correlated to poor prognosis. We also found HIP1 to be a metastatic suppressor in AdCA. HIP1 significantly repressed the mobility of lung cancer cells in vitro and in vivo and regulated the epithelial-mesenchymal transition by repressing AKT/glycogen synthase kinase-3ß/ß-catenin signaling. CONCLUSIONS: HIP1 serves as an early-stage prognostic biomarker and a metastatic suppressor. Reduced expression during AdCA progression can relieve HIP1 suppression of Akt-mediated epithelial-mesenchymal transition and thereby lead to development of late metastases and poor prognosis.


Assuntos
Adenocarcinoma/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma de Pulmão , Biomarcadores Tumorais/genética , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos , Pessoa de Meia-Idade , Análise de Sobrevida
6.
Biochim Biophys Acta ; 1852(10 Pt A): 2195-201, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232688

RESUMO

Heme oxygenase (HO)-1 confers transient resistance against oxidative damage, including renal ischemia-reperfusion injury (IRI). We investigated the potential protective effect of HO-1 induction in a mouse model of renal IRI induced by bilateral clamping of the kidney arteries. The mice were randomly assigned to five groups to receive an intraperitoneal injection of PBS, hemin (an HO-1 inducer, 100µmol/kg), hemin+ZnPP (an HO-1 inhibitor, 5mg/kg), hemin+PD98059 (a MEK-ERK inhibitor, 10mg/kg) or a sham operation. All of the groups except for the sham-operated group underwent 25min of ischemia and 24 to 72h of reperfusion. Renal function and tubular damage were assessed in the mice that received hemin or the vehicle treatment prior to IRI. The renal injury score and HO-1 protein levels were evaluated via H&E and immunohistochemistry staining. Hemin-preconditioned mice exhibited preserved renal cell function (BUN: 40±2mg/dl, creatinine: 0.53±0.06mg/dl), and the tubular injury score at 72h (1.65±0.12) indicated that tubular damage was prevented. Induction of HO-1 induced the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2. However, these effects were abolished with ZnPP treatment. Kidney function (BUN: 176±49mg/dl, creatinine: 1.54±0.39mg/dl) increased, and the tubular injury score (3.73±0.09) indicated that tubular damage also increased with ZnPP treatment. HO-1-induced tubular epithelial proliferation was attenuated by PD98059. Our findings suggest that HO-1 preconditioning promotes ERK1/2 phosphorylation and enhances tubular recovery, which subsequently prevents further renal injury.

7.
Crit Care Med ; 44(9): e866-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27065465

RESUMO

OBJECTIVES: Acute cardiomyopathy is a health problem worldwide. Few studies have shown an association between acute cardiomyopathy and low vitamin D status. Paricalcitol, a vitamin D receptor activator, clinically benefits patients with advanced kidney disease. The effect of paricalcitol supplement on cardiac remodeling in cardiomyopathic rats is unknown. This experimental study investigated the effect of paricalcitol in rats with cardiomyopathy induced by isoproterenol. DESIGN: Prospective, randomized, controlled experimental study. SETTING: Hospital-affiliated animal research institution. SUBJECTS: Eight-week-old male Wistar-Kyoto rats. INTERVENTIONS: Male Wistar-Kyoto rats were first injected intraperitoneally with isoproterenol to create a rat model of acute cardiomyopathy. Then paricalcitol was administered intraperitoneally to isoproterenol-injected rats at a dosage of 200 ng three times a week for 3 weeks. Relevant cardiomyopathy-related variables were measured regularly in three groups of rats, controls, isoproterenol, and isoproterenol plus paricalcitol. Rat hearts were obtained for evaluation of cardiac fibrosis using Masson trichrome staining and commercially available software, and evaluation of cell transition using immunofluorescence staining analysis. MEASUREMENTS AND MAIN RESULTS: Isoproterenol infusions generated significant cardiac fibrosis (p < 0.001). Subsequent paricalcitol treatment attenuated the isoproterenol-induced cardiac fibrosis (p = 0.006). Fluorescence showed colocalization of endothelial and fibroblast cell markers (cluster differentiation 31 and α-smooth muscle actin, respectively) in the isoproterenol-treated hearts. Paricalcitol injections attenuated the isoproterenol-induced fluorescence intensity of two cell markers (p < 0.01). CONCLUSIONS: Paricalcitol injections may ameliorate isoproterenol-induced cardiac fibrosis possibly through regulating cell transition.


Assuntos
Cardiomiopatias/patologia , Cardiomiopatias/prevenção & controle , Ergocalciferóis/uso terapêutico , Actinas/metabolismo , Animais , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Células Endoteliais , Transição Epitelial-Mesenquimal , Fibrose , Isoproterenol , Masculino , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Endogâmicos WKY
8.
Nucleic Acids Res ; 42(22): 13573-87, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25398907

RESUMO

We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Mitose , Peptidilprolil Isomerase/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Células Cultivadas , DNA/metabolismo , Células HeLa , Humanos , Camundongos , Mitose/genética , Peptidilprolil Isomerase de Interação com NIMA , Fosforilação , Conformação Proteica , Estabilidade Proteica , Fator de Transcrição Sp1/química
9.
Biochim Biophys Acta ; 1843(9): 2055-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24915000

RESUMO

Upregulation of Pin1 was shown to advance the functioning of several oncogenic pathways. It was recently shown that Pin1 is potentially an excellent prognostic marker and can also serve as a novel therapeutic target for prostate cancer. However, the molecular mechanism of Pin1 overexpression in prostate cancer is still unclear. In the present study, we showed that the mRNA expression levels of Pin1 were not correlated with Pin1 protein levels in prostate cell lines which indicated that Pin1 may be regulated at the post-transcriptional level. A key player in post-transcriptional regulation is represented by microRNAs (miRNAs) that negatively regulate expressions of protein-coding genes at the post-transcriptional level. A bioinformatics analysis revealed that miR-296-5p has a conserved binding site in the Pin1 3'-untranslated region (UTR). A luciferase reporter assay demonstrated that the seed region of miR-296-5p directly interacts with the 3'-UTR of Pin1 mRNA. Moreover, miR-296-5p expression was found to be inversely correlated with Pin1 expression in prostate cancer cell lines and prostate cancer tissues. Furthermore, restoration of miR-296-5p or the knockdown of Pin1 had the same effect on the inhibition of the ability of cell proliferation and anchorage-independent growth of prostate cancer cell lines. Our results support miR-296-5p playing a tumor-suppressive role by targeting Pin1 and implicate potential effects of miR-296-5p on the prognosis and clinical application to prostate cancer therapy.


Assuntos
MicroRNAs/metabolismo , Peptidilprolil Isomerase/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , MicroRNAs/genética , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/antagonistas & inibidores , Peptidilprolil Isomerase/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
10.
J Cell Sci ; 126(Pt 21): 4862-72, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23970419

RESUMO

Pin1 was the first prolyl isomerase identified that is involved in cell division. The mechanism by which Pin1 acts as a negative regulator of mitotic activity in G2 phase remains unclear. Here, we found that Aurora A can interact with and phosphorylate Pin1 at Ser16, which suppresses the G2/M function of Pin1 by disrupting its binding ability and mitotic entry. Our results also show that phosphorylation of Bora at Ser274 and Ser278 is crucial for binding of Pin1. Through the interaction, Pin1 can alter the cytoplasmic translocation of Bora and promote premature degradation by ß-TrCP, which results in a delay in mitotic entry. Together with the results that Pin1 protein levels do not significantly fluctuate during cell-cycle progression and Aurora A suppresses Pin1 G2/M function, our data demonstrate that a gain of Pin1 function can override the Aurora-A-mediated functional suppression of Pin1. Collectively, these results highlight the physiological significance of Aurora-A-mediated Pin1 Ser16 phosphorylation for mitotic entry and the suppression of Pin1 is functionally linked to the regulation of mitotic entry through the Aurora-A-Bora complex.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células/citologia , Fase G2 , Mitose , Peptidilprolil Isomerase/metabolismo , Motivos de Aminoácidos , Animais , Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Células/enzimologia , Células/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Fosforilação , Ligação Proteica
11.
Mol Cell Proteomics ; 12(5): 1335-49, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23397142

RESUMO

Deciphering the network of signaling pathways in cancer via protein-protein interactions (PPIs) at the cellular level is a promising approach but remains incomplete. We used an in situ proximity ligation assay to identify and quantify 67 endogenous PPIs among 21 interlinked pathways in two hepatocellular carcinoma (HCC) cells, Huh7 (minimally migratory cells) and Mahlavu (highly migratory cells). We then applied a differential network biology analysis and determined that the novel interaction, CRKL-FLT1, has a high centrality ranking, and the expression of this interaction is strongly correlated with the migratory ability of HCC and other cancer cell lines. Knockdown of CRKL and FLT1 in HCC cells leads to a decrease in cell migration via ERK signaling and the epithelial-mesenchymal transition process. Our immunohistochemical analysis shows high expression levels of the CRKL and CRKL-FLT1 pair that strongly correlate with reduced disease-free and overall survival in HCC patient samples, and a multivariate analysis further established CRKL and the CRKL-FLT1 as novel prognosis markers. This study demonstrated that functional exploration of a disease network with interlinked pathways via PPIs can be used to discover novel biomarkers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Intervalo Livre de Doença , Células HEK293 , Células Hep G2 , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Transdução de Sinais , Análise Serial de Tecidos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
12.
Am J Respir Crit Care Med ; 190(6): 675-87, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25152164

RESUMO

RATIONALE: Metabolic alterations contribute to cancer development and progression. However, the molecular mechanisms relating metabolism to cancer metastasis remain largely unknown. OBJECTIVES: To identify a key metabolic enzyme that is aberrantly overexpressed in invasive lung cancer cells and to investigate its functional role and prognostic value in lung cancer. METHODS: The differential expression of metabolic enzymes in noninvasive CL1-0 cells and invasive CL1-5 cells was analyzed by a gene expression microarray. The expression of target genes in clinical specimens from patients with lung cancer was examined by immunohistochemistry. Pharmacologic and gene knockdown/overexpression approaches were used to investigate the function of the target gene during invasion and metastasis in vitro and in vivo. The association between the target gene expression and clinicopathologic parameters was further analyzed. Bioinformatic analyses were used to discover the signaling pathways involved in target gene-regulated invasion and migration. MEASUREMENTS AND MAIN RESULTS: Squalene synthase (SQS) was up-regulated in CL1-5 cells and in the tumor regions of the lung cancer specimens. Loss of function or knockdown of SQS significantly inhibited invasion/migration and metastasis in cell and animal models and vice versa. High expression of SQS was significantly associated with poor prognosis among patients with lung cancer. Mechanistically, SQS contributed to a lipid-raft-localized enrichment of tumor necrosis factor receptor 1 in a cholesterol-dependent manner, which resulted in the enhancement of nuclear factor-κB activation leading to matrix metallopeptidase 1 up-regulation. CONCLUSIONS: Up-regulation of SQS promotes metastasis of lung cancer by enhancing tumor necrosis factor-α receptor 1 and nuclear factor-κB activation and matrix metallopeptidase 1 expression. Targeting SQS may have considerable potential as a novel therapeutic strategy to treat metastatic lung cancer.


Assuntos
Farnesil-Difosfato Farnesiltransferase/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/secundário , Microdomínios da Membrana/metabolismo , Invasividade Neoplásica/fisiopatologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Linhagem Celular Tumoral , Colesterol/biossíntese , Modelos Animais de Doenças , Farnesil-Difosfato Farnesiltransferase/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Metaloproteinase 1 da Matriz/metabolismo , Prognóstico , Regulação para Cima
13.
Int J Cancer ; 135(3): 563-73, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407731

RESUMO

The transcriptional network of the SRY (sex determining region Y)-box 17 (SOX17) and the prognostic impact of SOX17 protein expression in human cancers remain largely unclear. In this study, we evaluated the prognostic effect of low SOX17 protein expression and its dysregulation of transcriptional network in esophageal squamous cell carcinoma (ESCC). Low SOX17 protein expression was found in 47.4% (73 of 154) of ESCC patients with predicted poor prognosis. Re-expression of SOX17 in ESCC cells caused reduced foci formation, cell motility, decreased ESCC xenograft growth and metastasis in animals. Knockdown of SOX17 increased foci formation in ESCC and normal esophageal cells. Notably, 489 significantly differential genes involved in cell growth and motility controls were identified by expression array upon SOX17 overexpression and 47 genes contained putative SRY element in their promoters. Using quantitative chromatin immunoprecipitation-PCR and promoter activity assays, we confirmed that MACC1, MALAT1, NBN, NFAT5, CSNK1A1, FN1 and SERBP1 genes were suppressed by SOX17 via the SRY binding-mediated transcriptional regulation. Overexpression of FN1 and MACC1 abolished SOX17-mediated migration and invasion suppression. The inverse correlation between SOX17 and FN1 protein expression in ESCC clinical samples further strengthened our conclusion that FN1 is a transcriptional repression target gene of SOX17. This study provides compelling clinical evidence that low SOX17 protein expression is a prognostic biomarker and novel cell and animal data of SOX17-mediated suppression of ESCC metastasis. We establish the first transcriptional network and identify new suppressive downstream genes of SOX17 which can be potential therapeutic targets for ESCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia/patologia , Fatores de Transcrição SOXF/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/secundário , Movimento Celular , Proliferação de Células , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metástase Linfática , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas/genética , Taxa de Sobrevida , Transativadores , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Biomed Sci ; 21: 75, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25160749

RESUMO

BACKGROUND: Pin1 promotes oncogenesis by regulating multiple oncogenic signaling. In this study, we investigated the involvement of Pin1 in tumor progression and in the prognosis of human esophageal squamous cell carcinoma (ESCC). RESULTS: We observed that proliferation, clonogenicity and tumorigenesis of CE81T cells were inhibited by Pin1 knockdown. We next analyzed Pin1 expression in clinical ESCC specimens. When compared to the corresponding non-tumor part, Pin1 protein and mRNA levels in tumor part were higher in 84% and 62% patients, respectively. By immunohistochemistry, we identified that high Pin1 expression was associated with higher primary tumor stage (p = 0.035), higher overall cancer stage (p = 0.047) and poor overall survival (p < 0.001). Furthermore, the association between expression of Pin1 and levels of ß-catenin and cyclin D in cell line and clinical specimens was evaluated. ß-catenin and cyclin D1 were decreased in CE81T cells with Pin1 knockdown. Cyclin D1 level correlated with Pin1 expression in clinical ESCC specimens. CONCLUSIONS: Pin1 upregulation was associated with advanced stage and poor prognosis of ESCC. Pin1 knockdown inhibited aggressiveness of ESCC cells. ß-catenin and cyclin D1 were positively regulated by Pin1. These results indicated that targeting Pin1 pathway could represent a potential modality for treating ESCC.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/mortalidade , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/mortalidade , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Peptidilprolil Isomerase/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Intervalo Livre de Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptidilprolil Isomerase de Interação com NIMA , Proteínas de Neoplasias/genética , Peptidilprolil Isomerase/genética , Estudos Retrospectivos , Taxa de Sobrevida , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
15.
Anesthesiology ; 120(5): 1192-204, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24614323

RESUMO

BACKGROUND: Bilateral lesions of nucleus tractus solitarii in rat result in acute hypertension, pulmonary edema, and death within hours. The hypertension results from excessive catecholamine release. Catecholamine can activate connexin43 to regulate cell death. There is no study investigating the cardiopulmonary impacts of different adrenergic blockers and apoptosis mechanism in rat model. METHODS: The authors microinjected 6-hydroxydopamine into nucleus tractus solitarii of the rat (n = 8 per group) and evaluated the cardiopulmonary changes after treatment with different concentrations of α1-blockers, α2-blockers, ß-blockers, and α-agonists. RESULTS: In the rat model, the authors found that prazosin (0.15 mg/kg) treatment could preserve cardiac output and reverse neutrophil infiltrations in lungs and lead to prevent pulmonary hemorrhagic edema. The time-dependent increases in connexin43 and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells induced by 6-hydroxydopamine lesions were decreased after prazosin treatment (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells at 6 h: 64.01 ± 2.41% vs. 24.47 ± 3.10%; mean ± SD, P < 0.001, in heart, and 80.83 ± 2.52% vs. 2.60 ± 1.03%, P < 0.001, in lung). However, propranolol caused further compromise of the already impaired cardiac output with consequence of rapid death. Phenylephrine enhanced the phenotype in the link between connexin43 expressions and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells but not yohimbine. Connexin43 expressions and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were more decreased with prazosin (0.15 and 0.3 mg/kg) than that with prazosin (0.05 mg/kg) treatment. CONCLUSIONS: α1-Receptors are the keystones of the phenotype. In some brainstem encephalitis and brain injury with nucleus tractus solitarii involvement, early α1-receptor blockade treatment may prevent acute death from tissue apoptosis. α-Blockers can also decrease cerebral perfusion pressure, and further studies are needed in translation to brain injury with increased intracranial pressure.


Assuntos
Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Tronco Encefálico/patologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Antagonistas Adrenérgicos alfa/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Tronco Encefálico/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Débito Cardíaco/fisiologia , Hipertensão/etiologia , Masculino , Ratos , Ratos Sprague-Dawley
16.
Int J Med Sci ; 11(8): 779-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936140

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with poor prognosis. We aimed to identify a panel of CpG methylation biomarkers for prognosis prediction of ESCC patients. METHODS: Illumina's GoldenGate methylation array, supervised principal components, Kaplan-Meier survival analyses and Cox regression model were conducted on dissected tumor tissues from a training cohort of 40 ESCC patients to identify potential CpG methylation biomarkers. Pyrosequencing quantitative methylation assay were performed to validate prognostic CpG methylation biomarkers in 61 ESCC patients. The correlation between DNA methylation and RNA expression of a validated marker, SOX17, was examined in a validation cohort of 61 ESCC patients. RESULTS: We identified a panel of nine CpG methylation probes located at promoter or exon1 region of eight genes including DDIT3, FES, FLT3, NTRK3, SEPT5, SEPT9, SOX1, and SOX17, for prognosis prediction in ESCC patients. Risk score calculated using the eight-gene panel statistically predicted poor outcome for patients with high risk score. These eight-gene also showed a significantly higher methylation level in tumor tissues than their corresponding normal samples in all patients analyzed. In addition, we also detected an inverse correlation between CpG hypermethylation and the mRNA expression level of SOX17 gene in ESCC patients, indicating that DNA hypermethylation was responsible for decreased expression of SOX17. CONCLUSIONS: This study established a proof-of-concept CpG methylation biomarker panel for ESCC prognosis that can be further validated by multiple cohort studies. Functional characterization of the eight prognostic methylation genes in our biomarker panel could help to dissect the mechanism of ESCC tumorigenesis.


Assuntos
Carcinoma de Células Escamosas/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Neoplasias Esofágicas/genética , Proteínas de Neoplasias/biossíntese , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinogênese , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Prognóstico , Regiões Promotoras Genéticas
17.
World J Surg Oncol ; 12: 189, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24947165

RESUMO

BACKGROUND: Osteopontin (OPN) is a secreted phosphoprotein expressed by neoplastic cells involved in the malignant potential and aggressive phenotypes of human malignancies, including gastrointestinal stromal tumors (GISTs). Our previous study showed that OPN can promote tumor cell proliferation in GISTs. In this series, we further aim to investigate the effect of OPN on apoptosis in GISTs. METHODS: The expression of apoptotic and anti-apoptotic proteins in response to OPN was evaluated. In vitro effects of OPN against apoptosis in GIST were also assessed. GIST specimens were also used for analyzing protein expression of specific apoptosis-related molecules and their clinicopathologic significance. RESULTS: Up-regulation of ß-catenin and anti-apoptotic proteins Mcl-1 with concomitant suppression of apoptotic proteins in response to OPN was noted. A significant anti-apoptotic effect of OPN on imatinib-induced apoptosis was identified. Furthermore, Mcl-1 overexpression was significantly associated with OPN and ß-catenin expression in tumor tissues, as well as worse survival clinically. CONCLUSIONS: Our study identifies anti-apoptotic effects of OPN that, through ß-catenin-mediated Mcl-1 up-regulation, significantly antagonized imatinib-induced apoptosis in GISTs. These results provide a potential rationale for therapeutic strategies targeting both OPN and Mcl-1 of the same anti-apoptotic signaling pathway, which may account for resistance to imatinib in GISTs.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Regulação Neoplásica da Expressão Gênica , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Osteopontina/metabolismo , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Western Blotting , Proliferação de Células , Feminino , Tumores do Estroma Gastrointestinal/genética , Humanos , Mesilato de Imatinib , Técnicas Imunoenzimáticas , Masculino , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Estadiamento de Neoplasias , Osteopontina/antagonistas & inibidores , Osteopontina/genética , Piperazinas/farmacologia , Prognóstico , Pirimidinas/farmacologia , Células Tumorais Cultivadas , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
18.
Cell Death Dis ; 15(5): 310, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697967

RESUMO

Breast cancer (BC) is the most common cancer and the leading cause of cancer-related deaths in women worldwide. The 5-year survival rate is over 90% in BC patients, but once BC cells metastasis into distal organs, it is dramatically decreasing to less than 30%. Especially, triple-negative breast cancer (TNBC) patients usually lead to poor prognosis and survival because of metastasis. Understanding the underline mechanisms of TNBC metastasis is a critical issue. Non-coding RNAs, including of lncRNAs and microRNAs, are non-protein-coding transcripts and have been reported as important regulators in TNBC metastasis. However, the underline mechanisms for non-coding RNAs regulating TNBC metastasis remain largely unclear. Here, we found that lncRNA MIR4500HG003 was highly expressed in highly metastatic MDA-MB-231 TNBC cells and overexpression of MIR4500HG003 enhanced metastasis ability in vitro and in vivo and promoted MMP9 expression. Furthermore, we found MIR4500HG003 physically interacted with miR-483-3p and reporter assay showed miR-483-3p attenuated MMP9 expression. Importantly, endogenous high expressions of MIR4500HG003 were correlated with tumor recurrence in TNBC patients with tumor metastasis. Taken together, our findings suggested that MIR4500HG003 promotes metastasis of TNBC through miR-483-3p-MMP9 signaling axis and may be used as potential prognostic marker for TNBC patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz , MicroRNAs , Metástase Neoplásica , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Linhagem Celular Tumoral , Animais , Camundongos , Camundongos Nus , Movimento Celular/genética , Camundongos Endogâmicos BALB C
19.
Carcinogenesis ; 34(3): 530-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23188675

RESUMO

Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44(high) prostate tumor-initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression remain unclear. In this study, we found that miR-320 is significantly downregulated in PCa. Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. Global gene expression profiling of miR-320-overexpressing PCa cells reveals that downstream target genes of Wnt/ß-catenin pathway and cancer stem cell markers are significantly decreased. MicroRNA-320 inhibits ß-catenin expression by targeting the 3'-untranslated region of ß-catenin mRNA. The reduction of miR-320 associated with increased ß-catenin was also found in CD44(high) subpopulation of prostate cancer cells and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem-like properties, such as tumorsphere formation, chemoresistance and tumorigenic abilities, although enriching the population of stem-like TICs among PCa cells. Furthermore, increased miR-320 expression in prostate stem-like TICs significantly suppresses stem cell-like properties of PCa cells. These results support that miR-320 is a key negative regulator in prostate TICs, and suggest developing miR-320 as a novel therapeutic agent may offer benefits for PCa treatment.


Assuntos
Regulação para Baixo , MicroRNAs/fisiologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/patologia , Via de Sinalização Wnt , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/metabolismo , Esferoides Celulares/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Carcinogenesis ; 34(11): 2452-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23774402

RESUMO

Loss of RUNX3 expression is frequently observed in gastric cancer and is highly associated with lymph node metastasis and poor prognosis. However, the underlying molecular mechanisms of gastric cancer remain unknown. In this study, we found that the protein levels of RUNX3 and osteopontin (OPN) are inversely correlated in gastric cancer clinical specimens and cell lines. Furthermore, similar inverse trends between RUNX3 and OPN messenger RNA (mRNA) expression were demonstrated in six out of seven normal-tumor-paired gastric cancer clinical specimens. In addition, low RUNX3 and high OPN expression were associated with poor prognosis in gastric cancer patients. Ectopic expression of green fluorescent protein-RUNX3 reduced OPN protein and mRNA expression in the AGS and SCM-1 gastric cancer cell lines. In contrast, knockdown of RUNX3 in GES-1, a normal gastric epithelial cell line, increased OPN expression. Although three RUNX3-binding sequences have been identified in the OPN promoter region, direct binding of RUNX3 to the specific binding site, -142 to -137bp, was demonstrated by chromatin immunoprecipitation assay. The binding of RUNX3 to the OPN promoter significantly decreased OPN promoter activity. The knockdown of OPN or overexpression of RUNX3 inhibited cell migration in AGS and SCM-1 cells; however, the coexpression of RUNX3 and OPN reversed the RUNX3-reduced migration ability in AGS and SCM-1 cells. In contrast, the knockdown of both RUNX3 and OPN inhibited RUNX3-knockdown-induced migration of GES-1 cells. Together, our data demonstrated that RUNX3 is a transcriptional repressor of OPN and that loss of RUNX3 upregulates OPN, which promotes migration in gastric cancer cells.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Movimento Celular , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Osteopontina/metabolismo , Neoplasias Gástricas/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Apoptose , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Western Blotting , Adesão Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Citometria de Fluxo , Mucosa Gástrica/metabolismo , Perfilação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Osteopontina/genética , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA