Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cell ; 179(2): 459-469.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585083

RESUMO

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.


Assuntos
Bacteriófago T3/genética , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Terapia por Fagos/métodos , Dermatopatias Bacterianas/terapia , Proteínas da Cauda Viral/genética , Animais , Farmacorresistência Bacteriana , Especificidade de Hospedeiro , Camundongos , Mutagênese Sítio-Dirigida
2.
Cell ; 171(5): 1138-1150.e15, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29056342

RESUMO

Despite its success in several clinical trials, cancer immunotherapy remains limited by the rarity of targetable tumor-specific antigens, tumor-mediated immune suppression, and toxicity triggered by systemic delivery of potent immunomodulators. Here, we present a proof-of-concept immunomodulatory gene circuit platform that enables tumor-specific expression of immunostimulators, which could potentially overcome these limitations. Our design comprised de novo synthetic cancer-specific promoters and, to enhance specificity, an RNA-based AND gate that generates combinatorial immunomodulatory outputs only when both promoters are mutually active. These outputs included an immunogenic cell-surface protein, a cytokine, a chemokine, and a checkpoint inhibitor antibody. The circuits triggered selective T cell-mediated killing of cancer cells, but not of normal cells, in vitro. In in vivo efficacy assays, lentiviral circuit delivery mediated significant tumor reduction and prolonged mouse survival. Our design could be adapted to drive additional immunomodulators, sense other cancers, and potentially treat other diseases that require precise immunological programming.


Assuntos
Redes Reguladoras de Genes , Imunoterapia/métodos , Neoplasias Ovarianas/terapia , Animais , Feminino , Humanos , Imunomodulação , Camundongos , Neoplasias Ovarianas/imunologia , Regiões Promotoras Genéticas , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia
3.
Cell ; 150(3): 647-58, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863014

RESUMO

Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.


Assuntos
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Dedos de Zinco , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Biologia Sintética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Mol Cell ; 75(4): 769-780.e4, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442423

RESUMO

The ability to process and store information in living cells is essential for developing next-generation therapeutics and studying biology in situ. However, existing strategies have limited recording capacity and are challenging to scale. To overcome these limitations, we developed DOMINO, a robust and scalable platform for encoding logic and memory in bacterial and eukaryotic cells. Using an efficient single-nucleotide-resolution Read-Write head for DNA manipulation, DOMINO converts the living cells' DNA into an addressable, readable, and writable medium for computation and storage. DOMINO operators enable analog and digital molecular recording for long-term monitoring of signaling dynamics and cellular events. Furthermore, multiple operators can be layered and interconnected to encode order-independent, sequential, and temporal logic, allowing recording and control over the combination, order, and timing of molecular events in cells. We envision that DOMINO will lay the foundation for building robust and sophisticated computation-and-memory gene circuits for numerous biotechnological and biomedical applications.


Assuntos
Computadores Moleculares , DNA , DNA/química , DNA/metabolismo , Células HEK293 , Humanos
5.
Annu Rev Microbiol ; 74: 337-359, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32660390

RESUMO

The ability to detect disease early and deliver precision therapy would be transformative for the treatment of human illnesses. To achieve these goals, biosensors that can pinpoint when and where diseases emerge are needed. Rapid advances in synthetic biology are enabling us to exploit the information-processing abilities of living cells to diagnose disease and then treat it in a controlled fashion. For example, living sensors could be designed to precisely sense disease biomarkers, such as by-products of inflammation, and to respond by delivering targeted therapeutics in situ. Here, we provide an overview of ongoing efforts in microbial biosensor design, highlight translational opportunities, and discuss challenges for enabling sense-and-respond precision medicines.


Assuntos
Bactérias/metabolismo , Tecnologia Biomédica , Técnicas Biossensoriais/métodos , Biologia Sintética/métodos , Bactérias/genética , Biotecnologia/organização & administração , Humanos , Inflamação/diagnóstico , Processamento de Proteína Pós-Traducional
6.
Mol Cell ; 68(1): 247-257.e5, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985507

RESUMO

The genome-wide perturbation of transcriptional networks with CRISPR-Cas technology has primarily involved systematic and targeted gene modulation. Here, we developed PRISM (Perturbing Regulatory Interactions by Synthetic Modulators), a screening platform that uses randomized CRISPR-Cas transcription factors (crisprTFs) to globally perturb transcriptional networks. By applying PRISM to a yeast model of Parkinson's disease (PD), we identified guide RNAs (gRNAs) that modulate transcriptional networks and protect cells from alpha-synuclein (αSyn) toxicity. One gRNA identified in this screen outperformed the most protective suppressors of αSyn toxicity reported previously, highlighting PRISM's ability to identify modulators of important phenotypes. Gene expression profiling revealed genes differentially modulated by this strong protective gRNA that rescued yeast from αSyn toxicity when overexpressed. Human homologs of top-ranked hits protected against αSyn-induced cell death in a human neuronal PD model. Thus, high-throughput and unbiased perturbation of transcriptional networks via randomized crisprTFs can reveal complex biological phenotypes and effective disease modulators.


Assuntos
Sistemas CRISPR-Cas , Redes Reguladoras de Genes , RNA Guia de Cinetoplastídeos/genética , Fatores de Transcrição/genética , Transcrição Gênica , alfa-Sinucleína/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transgenes , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo
7.
Annu Rev Genet ; 50: 515-538, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27732793

RESUMO

High-order interactions among components of interconnected genetic networks regulate complex functions in biological systems, but deciphering these interactions is challenging. New strategies are emerging to decode these combinatorial genetic interactions across a wide range of organisms. Here, we review advances in multiplexed and combinatorial genetic perturbation technologies and high-throughput profiling platforms that are enabling the systematic dissection of complex genetic networks. These rapidly evolving technologies are being harnessed to probe combinatorial gene functions in functional genomics studies and have the potential to advance our understanding of how genetic networks regulate sophisticated biological phenotypes, to generate novel therapeutic strategies, and to enable the engineering of complex artificial gene networks.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Engenharia Genética/métodos , Animais , Expressão Gênica , Humanos , Modelos Genéticos , Interferência de RNA , Processamento Pós-Transcricional do RNA , Biologia de Sistemas/métodos
8.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33906944

RESUMO

Creating and characterizing individual genetic variants remains limited in scale, compared to the tremendous variation both existing in nature and envisioned by genome engineers. Here we introduce retron library recombineering (RLR), a methodology for high-throughput functional screens that surpasses the scale and specificity of CRISPR-Cas methods. We use the targeted reverse-transcription activity of retrons to produce single-stranded DNA (ssDNA) in vivo, incorporating edits at >90% efficiency and enabling multiplexed applications. RLR simultaneously introduces many genomic variants, producing pooled and barcoded variant libraries addressable by targeted deep sequencing. We use RLR for pooled phenotyping of synthesized antibiotic resistance alleles, demonstrating quantitative measurement of relative growth rates. We also perform RLR using the sheared genomic DNA of an evolved bacterium, experimentally querying millions of sequences for causal variants, demonstrating that RLR is uniquely suited to utilize large pools of natural variation. Using ssDNA produced in vivo for pooled experiments presents avenues for exploring variation across the genome.


Assuntos
Sistemas CRISPR-Cas/genética , DNA de Cadeia Simples/genética , Resistência Microbiana a Medicamentos/genética , Engenharia Genética , Genoma Bacteriano/genética , Alelos , DNA de Cadeia Simples/biossíntese , Escherichia coli/genética , Biblioteca Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Saccharomyces cerevisiae/genética , Biologia Sintética
9.
Mol Syst Biol ; 18(11): e9933, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377768

RESUMO

The gut microbiome is essential for processing complex food compounds and synthesizing nutrients that the host cannot digest or produce, respectively. New model systems are needed to study how the metabolic capacity provided by the gut microbiome impacts the nutritional status of the host, and to explore possibilities for altering host metabolic capacity via the microbiome. Here, we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C. elegans to utilize cellulose, an otherwise indigestible substrate, as a carbon source. Cellulolytic bacteria as a community component in the worm gut can also support additional bacterial species with specialized roles, which we demonstrate by using Lactobacillus plantarum to protect C. elegans against Salmonella enterica infection. This work shows that engineered microbiome communities can be used to endow host organisms with novel functions, such as the ability to utilize alternate nutrient sources or to better fight pathogenic bacteria.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Caenorhabditis elegans/microbiologia , Bactérias
10.
Nat Chem Biol ; 17(6): 724-731, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820990

RESUMO

Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.


Assuntos
Bactérias/efeitos dos fármacos , Hidrogéis/farmacologia , Alginatos/química , Antibacterianos/farmacologia , Bactérias/genética , Materiais Biocompatíveis , Bioengenharia , DNA Bacteriano/química , DNA Bacteriano/genética , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Heme/química , Metais Pesados/química , Organismos Geneticamente Modificados , Percepção de Quorum , Rios , Poluentes da Água/química
11.
J Pept Sci ; 29(8): e3482, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36739581

RESUMO

Membrane-active peptides play an essential role in many living organisms and their immune systems and counter many infectious diseases. Many have dual or multiple mechanisms and can synergize with other molecules, like peptides, proteins, and small molecules. Although membrane-active peptides have been intensively studied in the past decades and more than 3500 sequences have been identified, only a few received approvals from the US Food and Drug Administration. In this review, we investigated all the peptide therapeutics that have entered the market or were subjected to preclinical and clinical studies to understand how they succeeded. With technological advancement (e.g., chemical modifications and pharmaceutical formulations) and a better understanding of the mechanism of action and the potential targets, we found at least five membrane-active peptide drugs that have entered preclinical/clinical phases and show promising results for cancer treatment. We summarized our findings in this review and provided insights into membrane-active anticancer peptide therapeutics.


Assuntos
Peptídeos , Proteínas , Estados Unidos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Composição de Medicamentos
12.
Mol Cell ; 59(2): 146-8, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186289

RESUMO

In a recent issue of Nature Methods, Shechner et al. (2015) reported the development of CRISPR Display (CRISP-Disp), which is a sophisticated, flexible, modular, and multiplexable platform for targeting different types of non-coding RNAs (ncRNAs) to genomic loci. CRISP-Disp will facilitate synthetic-biology applications and enable the elucidation of ncRNA functions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Longo não Codificante/fisiologia , Humanos
13.
Proc Natl Acad Sci U S A ; 117(43): 26936-26945, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046640

RESUMO

Novel antibiotics are urgently needed to combat multidrug-resistant pathogens. Venoms represent previously untapped sources of novel drugs. Here we repurposed mastoparan-L, the toxic active principle derived from the venom of the wasp Vespula lewisii, into synthetic antimicrobials. We engineered within its N terminus a motif conserved among natural peptides with potent immunomodulatory and antimicrobial activities. The resulting peptide, mast-MO, adopted an α-helical structure as determined by NMR, exhibited increased antibacterial properties comparable to standard-of-care antibiotics both in vitro and in vivo, and potentiated the activity of different classes of antibiotics. Mechanism-of-action studies revealed that mast-MO targets bacteria by rapidly permeabilizing their outer membrane. In animal models, the peptide displayed direct antimicrobial activity, led to enhanced ability to attract leukocytes to the infection site, and was able to control inflammation. Permutation studies depleted the remaining toxicity of mast-MO toward human cells, yielding derivatives with antiinfective activity in animals. We demonstrate a rational design strategy for repurposing venoms into promising antimicrobials.


Assuntos
Bacteriemia/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/química , Venenos de Vespas/química , Animais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Venenos de Vespas/uso terapêutico , Venenos de Vespas/toxicidade
14.
Nat Mater ; 20(5): 691-700, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33432140

RESUMO

Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Celulose/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Acetobacteraceae/genética , Técnicas de Cocultura , Saccharomyces cerevisiae/genética
15.
Trends Immunol ; 40(10): 952-973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601521

RESUMO

The gut microbiome has a significant impact on health and disease and can actively contribute to obesity, diabetes, inflammatory bowel disease, cardiovascular disease, and neurological disorders. We do not yet have the necessary tools to fine-tune the microbial communities that constitute the microbiome, though such tools could unlock extensive benefits to human health. Here, we provide an overview of the current state of technological tools that may be used for microbiome engineering. These tools can enable investigators to define the parameters of a healthy microbiome and to determine how gut bacteria may contribute to the etiology of a variety of diseases. These tools may also allow us to explore the exciting prospect of developing targeted therapies and personalized treatments for microbiome-linked diseases.


Assuntos
Microbioma Gastrointestinal , Engenharia Metabólica , Animais , Epigênese Genética/genética , Epigênese Genética/imunologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Humanos
16.
Mol Cell ; 54(4): 698-710, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24837679

RESUMO

RNA-based regulation and CRISPR/Cas transcription factors (CRISPR-TFs) have the potential to be integrated for the tunable modulation of gene networks. A major limitation of this methodology is that guide RNAs (gRNAs) for CRISPR-TFs can only be expressed from RNA polymerase III promoters in human cells, limiting their use for conditional gene regulation. We present new strategies that enable expression of functional gRNAs from RNA polymerase II promoters and multiplexed production of proteins and gRNAs from a single transcript in human cells. We use multiple RNA regulatory strategies, including RNA-triple-helix structures, introns, microRNAs, and ribozymes, with Cas9-based CRISPR-TFs and Cas6/Csy4-based RNA processing. Using these tools, we efficiently modulate endogenous promoters and implement tunable synthetic circuits, including multistage cascades and RNA-dependent networks that can be rewired with Csy4 to achieve complex behaviors. This toolkit can be used for programming scalable gene circuits and perturbing endogenous networks for biology, therapeutic, and synthetic biology applications.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Íntrons/genética , Íntrons/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Catalítico/metabolismo , Biologia Sintética , Fatores de Transcrição/genética , Pequeno RNA não Traduzido
17.
BMC Biol ; 19(1): 46, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722216

RESUMO

BACKGROUND: Iron is essential for bacterial survival. Bacterial siderophores are small molecules with unmatched capacity to scavenge iron from proteins and the extracellular milieu, where it mostly occurs as insoluble Fe3+. Siderophores chelate Fe3+ for uptake into the cell, where it is reduced to soluble Fe2+. Siderophores are key molecules in low soluble iron conditions. The ability of bacteria to synthesize proprietary siderophores may have increased bacterial evolutionary fitness; one way that bacteria diversify siderophore structure is by incorporating different polyamine backbones while maintaining the catechol moieties. RESULTS: We report that Serratia plymuthica V4 produces a variety of siderophores, which we term the siderome, and which are assembled by the concerted action of enzymes encoded in two independent gene clusters. Besides assembling serratiochelin A and B with diaminopropane, S. plymuthica utilizes putrescine and the same set of enzymes to assemble photobactin, a siderophore found in the bacterium Photorhabdus luminescens. The enzymes encoded by one of the gene clusters can independently assemble enterobactin. A third, independent operon is responsible for biosynthesis of the hydroxamate siderophore aerobactin, initially described in Enterobacter aerogenes. Mutant strains not synthesizing polyamine-siderophores significantly increased enterobactin production levels, though lack of enterobactin did not impact the production of serratiochelins. Knocking out SchF0, an enzyme involved in the assembly of enterobactin alone, significantly reduced bacterial fitness. CONCLUSIONS: This study shows the natural occurrence of serratiochelins, photobactin, enterobactin, and aerobactin in a single bacterial species and illuminates the interplay between siderophore biosynthetic pathways and polyamine production, indicating routes of molecular diversification. Given its natural yields of diaminopropane (97.75 µmol/g DW) and putrescine (30.83 µmol/g DW), S. plymuthica can be exploited for the industrial production of these compounds.


Assuntos
Família Multigênica , Poliaminas/metabolismo , Serratia/química , Sideróforos/química , Serratia/metabolismo , Sideróforos/metabolismo
18.
Adv Funct Mater ; 31(27)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35903441

RESUMO

Natural microbial sensing circuits can be rewired into new gene networks to build living sensors that detect and respond to disease-associated biomolecules. However, synthetic living sensors, once ingested, are cleared from the gastrointestinal (GI) tract within 48 hours; retaining devices in the intestinal lumen is prone to intestinal blockage or device migration. To localize synthetic microbes and safely extend their residence in the GI tract for health monitoring and sustained drug release, an ingestible magnetic hydrogel carrier is developed to transport diagnostic microbes to specific intestinal sites. The magnetic living hydrogel is localized and retained by attaching a magnet to the abdominal skin, resisting the peristaltic waves in the intestine. The device retention is validated in a human intestinal phantom and an in vivo rodent model, showing that the ingestible hydrogel maintains the integrated living bacteria for up to seven days, which allows the detection of heme for GI bleeding in the harsh environment of the gut. The retention of microelectronics is also demonstrated by incorporating a temperature sensor into the magnetic hydrogel carrier.

19.
Nat Chem Biol ; 15(7): 730-736, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31110306

RESUMO

N-linked glycosylation in monoclonal antibodies (mAbs) is crucial for structural and functional properties of mAb therapeutics, including stability, pharmacokinetics, safety and clinical efficacy. The biopharmaceutical industry currently lacks tools to precisely control N-glycosylation levels during mAb production. In this study, we engineered Chinese hamster ovary cells with synthetic genetic circuits to tune N-glycosylation of a stably expressed IgG. We knocked out two key glycosyltransferase genes, α-1,6-fucosyltransferase (FUT8) and ß-1,4-galactosyltransferase (ß4GALT1), genomically integrated circuits expressing synthetic glycosyltransferase genes under constitutive or inducible promoters and generated antibodies with concurrently desired fucosylation (0-97%) and galactosylation (0-87%) levels. Simultaneous and independent control of FUT8 and ß4GALT1 expression was achieved using orthogonal small molecule inducers. Effector function studies confirmed that glycosylation profile changes affected antibody binding to a cell surface receptor. Precise and rational modification of N-glycosylation will allow new recombinant protein therapeutics with tailored in vitro and in vivo effects for various biotechnological and biomedical applications.


Assuntos
Anticorpos Monoclonais/biossíntese , Engenharia Celular , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Anticorpos Monoclonais/química , Células CHO , Cricetulus , Glicosilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
20.
Nat Chem Biol ; 15(1): 34-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510190

RESUMO

Bacterial biofilms can be programmed to produce living materials with self-healing and evolvable functionalities. However, the wider use of artificial biofilms has been hindered by limitations on processability and functional protein secretion capacity. We describe a highly flexible and tunable living functional materials platform based on the TasA amyloid machinery of the bacterium Bacillus subtilis. We demonstrate that genetically programmable TasA fusion proteins harboring diverse functional proteins or domains can be secreted and can assemble into diverse extracellular nano-architectures with tunable physicochemical properties. Our engineered biofilms have the viscoelastic behaviors of hydrogels and can be precisely fabricated into microstructures having a diversity of three-dimensional (3D) shapes using 3D printing and microencapsulation techniques. Notably, these long-lasting and environmentally responsive fabricated living materials remain alive, self-regenerative, and functional. This new tunable platform offers previously unattainable properties for a variety of living functional materials having potential applications in biomaterials, biotechnology, and biomedicine.


Assuntos
Bacillus subtilis/fisiologia , Materiais Biocompatíveis/química , Biofilmes , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Materiais Biocompatíveis/metabolismo , Biodegradação Ambiental , Composição de Medicamentos , Elasticidade , Engenharia Genética/métodos , Nanopartículas/química , Paraoxon/metabolismo , Impressão Tridimensional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA