Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 98, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461231

RESUMO

Chemodynamic therapy (CDT) based on intracellular Fenton reaction to produce highly cytotoxic reactive oxygen species (ROS) has played an essential role in tumor therapy. However, this therapy still needs to be improved by weakly acidic pH and over-expression of glutathione (GSH) in tumor microenvironment (TEM), which hinders its future application. Herein, we reported a multifunctional bimetallic composite nanoparticle MnO2@GA-Fe@CAI based on a metal polyphenol network (MPN) structure, which could reduce intracellular pH and endogenous GSH by remodeling tumor microenvironment to improve Fenton activity. MnO2 nanoparticles were prepared first and MnO2@GA-Fe nanoparticles with Fe3+ as central ion and gallic acid (GA) as surface ligands were prepared by the chelation reaction. Then, carbonic anhydrase inhibitor (CAI) was coupled with GA to form MnO2@GA-Fe@CAI. The properties of the bimetallic composite nanoparticles were studied, and the results showed that CAI could reduce intracellular pH. At the same time, MnO2 could deplete intracellular GSH and produce Mn2+ via redox reactions, which re-established the TME with low pH and GSH. In addition, GA reduced Fe3+ to Fe2+. Mn2+ and Fe2+ catalyzed the endogenous H2O2 to produce high-lever ROS to kill tumor cells. Compared with MnO2, MnO2@GA-Fe@CAI could reduce the tumor weight and volume for the xenograft MDA-MB-231 tumor-bearing mice and the final tumor inhibition rate of 58.09 ± 5.77%, showing the improved therapeutic effect as well as the biological safety. Therefore, this study achieved the high-efficiency CDT effect catalyzed by bimetallic through reshaping the tumor microenvironment.


Assuntos
Nanopartículas , Neoplasias , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Peróxido de Hidrogênio , Compostos de Manganês/farmacologia , Espécies Reativas de Oxigênio , Óxidos , Ácido Gálico , Glutationa , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555485

RESUMO

Hypoxia is a major stressor and a prominent feature of pathological conditions, such as bacterial infections, inflammation, wounds, and cardiovascular defects. In this study, we investigated whether reoxygenation has a protective effect against hypoxia-induced acute injury and burn using the C57BL/6 mouse model. C57BL/6 mice were exposed to hypoxia and treated with both acute and burn injuries and were in hypoxia until wound healing. Next, C57BL/6 mice were exposed to hypoxia for three days and then transferred to normoxic conditions for reoxygenation until wound healing. Finally, skin wound tissue was collected to analyze healing-related markers, such as inflammation, vascularization, and collagen. Hypoxia significantly increased inflammatory cell infiltration and decreased vascular and collagen production, and reoxygenation notably attenuated hypoxia-induced infiltration of inflammatory cells, upregulation of pro-inflammatory cytokine levels (IL-6 and TNF-α) in the wound, and remission of inflammation in the wound. Immunofluorescence analysis showed that reoxygenation increased the expression of the angiogenic factor α-SMA and decreased ROS expression in burn tissues compared to hypoxia-treated animals. Moreover, further analysis by qPCR showed that reoxygenation could alleviate the expression of hypoxic-induced inflammatory markers (IL-6 and TNF), increase angiogenesis (SMA) and collagen synthesis (Col I), and thus promote wound healing. It is suggested that oxygen can be further evaluated in combination with oxygen-releasing materials as a supplementary therapy for patients with chronic hypoxic wounds.


Assuntos
Queimaduras , Interleucina-6 , Camundongos , Animais , Camundongos Endogâmicos C57BL , Cicatrização , Hipóxia/complicações , Colágeno , Oxigênio/farmacologia , Queimaduras/patologia , Inflamação/metabolismo
3.
J Proteome Res ; 19(8): 3386-3395, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32538096

RESUMO

Patients with nonobstructive coronary artery disease (NOCAD) have high risk associated with acute myocardial infarction (AMI), and fragmented QRS (fQRS) has a predictive value of AMI after percutaneous coronary intervention (PCI). A cohort of 254 participants were recruited including 136 NOCAD and 118 AMI patients from Xi'an No. 1 Hospital. Comprehensive metabolomics was performed by UPLC-Q/TOF-MS with multivariate statistical analyses. Hazard ratios were measured to discriminate the prognostic in AMI after PCI between differential metabolites and fQRS. OPLS-DA separated metabolites from NOCAD and AMI in serum. A total of 23 differential metabolites were identified between NOCAD and AMI. In addition, four differential metabolites, namely, acetylglycine, threoninyl-glycine, glutarylglycine, and nonanoylcarnitine, were identified between fQRS and non-fQRS in AMI. The hazard ratios demonstrate that the metabolites were associated with the risk of cardiac death, recurrent angina, readmissions, and major adverse cardiovascular events, which may clarify the mechanism of fQRS as a predictor in the prognostic of AMI after PCI. This study identified novel differential metabolites to distinguish the difference from NOCAD to AMI and clarify the mechanism of fQRS in prognostic of AMI after PCI, which may provide novel insights into potential risks and prognostic of AMI.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Eletrocardiografia , Humanos , Metabolômica , Infarto do Miocárdio/diagnóstico , Prognóstico
4.
Biomacromolecules ; 21(9): 3724-3735, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32692548

RESUMO

Fluorescent hyperbranched polysiloxane (HBPSi) has attracted increasing attention due to its good biocompatibility. However, its emission mechanism remains an open question. Unfortunately, the excitation spectra of HBPSi are rarely systematically investigated and show a narrow excitation band, which hinders the emission mechanism study. Herein, we synthesized a series of novel HBPSi containing l-glutamic acid (HBPSi-GA). Surprisingly, these polymers have four excitation peaks and two emission peaks, which are caused by the energy transfer from free functional groups to heterogeneous electron delocalizations in different clusters. Meanwhile, the fluorescence and biocompatibility of HBPSi-GA are significantly improved with increasing l-glutamic acid. Furthermore, HBPSi-GA exhibits dual stimuli-responsive fluorescence to temperature and Fe3+ as well as potential application in cell imaging. This research possesses important guidance to develop multiexcitation unconventional fluorescent polymers.


Assuntos
Polímeros , Siloxanas , Transferência de Energia , Fluorescência
5.
Mol Pharm ; 16(2): 689-700, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30601012

RESUMO

The excessive increase of intracellular reactive oxygen species (ROS) makes tumor cells usually in the state of oxidative stress. Although tumor cells can adapt to this state to a certain extent by upregulating antioxidant systems, the further ROS insults disrupt the transient intracellular redox balance, eventually leading to apoptosis and necrosis. Therefore, increasing the intracellular ROS level can effectively amplify the oxidative stress and induce apoptosis, which can be employed as a strategy for tumor treatment. Herein, a unique pH-responsive ROS inducing micellar system was reported in this study to specifically amplify the ROS signal in tumor cells. This micellar system was constructed by a new amphiphilic polymer, PIAThydCA, composed of poly(itaconic acid) (PIA) as the hydrophilic backbone, d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as the hydrophobic side chain, and cinnamaldehyde (CA) as the ROS-generating agent, which were linked to PIA by the pH-sensitive hydrazone bond. PIAThydCA micelles could be degraded in the intracellular acidic environment through the hydrolysis of hydrazone bond and release CA. CA and TPGS could amplify oxidative stress cooperatively to kill MCF-7 human breast cells preferentially through the mitochondrial apoptosis pathway. Therefore, we anticipate that the PIAThydCA micelles could exert great potential in anticancer therapy.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Polímeros/química , Acroleína/análogos & derivados , Acroleína/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Micelas , Oxirredução/efeitos dos fármacos , Polietilenoglicóis/química , Polímeros/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
Biomacromolecules ; 20(11): 4230-4240, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31633916

RESUMO

Hyperbranched polysiloxane (HBPSi) is attracting increasing attention due to its intrinsic fluorescence and good biocompatibility. However, it is very challenging to explore its biological applications because of the low fluorescence intensity and quantum yield. Herein, we introduced rigid ß-cyclodextrin to the end of flexible polysiloxane chain to synthesize a novel fluorescent polymer (HBPSi-CD) and explore its biological applications. Results showed that the fluorescence intensity and quantum yield of HBPSi-CD, compared with HBPSi, were significantly enhanced. Theoretical calculations and transmission electron microscopy demonstrated that the synergy effect of intra/intermolecular hydrogen bonds and hydrophobic effect promoted the formation of large supramolecular self-assemblies and space electron delocalization systems, leading to intense fluorescence. Notably, the biocompatible HBPSi-CD not only lighted up mouse fibroblast cells, but also possessed high ibuprofen loading capacity (160 mg g-1) and superior pH-responsive drug release performance. This work promoted the development of biological applications of HBPSi.


Assuntos
Sistemas de Liberação de Medicamentos , Imagem Molecular/métodos , Siloxanas/química , beta-Ciclodextrinas/química , Animais , Materiais Biocompatíveis/química , Rastreamento de Células/métodos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Camundongos , Siloxanas/farmacologia , beta-Ciclodextrinas/farmacologia
7.
Antimicrob Agents Chemother ; 58(10): 5658-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24982079

RESUMO

Artemether and lumefantrine (also known as benflumetol) are difficult to formulate for parenteral administration because of their low aqueous solubility. Cremophor EL as an emulsion excipient has been shown to cause serious side effects. This study reports a method of preparation and the therapeutic efficacies of novel lipid emulsion (LE) delivery systems with artemether, lumefantrine, or artemether in combination with lumefantrine, for parenteral administration. Their physical and chemical stabilities were also evaluated. Furthermore, the in vivo antimalarial activities of the lipid emulsions developed were tested in Plasmodium berghei-infected mice. Artemether, lumefantrine, or artemether in combination with lumefantrine was encapsulated in an oil phase, and the in vivo performance was assessed by comparison with artesunate for injection. It was found that the lumefantrine lipid emulsion (LUM-LE) and artemether-lumefantrine lipid emulsion (ARM-LUM-LE-3) (1:6) began to decrease the parasitemia levels after only 3 days, and the parasitemia inhibition was 90% at doses of 0.32 and 0.27 mg/kg, respectively, with immediate antimalarial effects greater than those of the positive-control group and constant antimalarial effects over 30 days. LUM-LE and ARM-LUM-LE-3 demonstrated the best performance in terms of chemical and physical stabilities and antiplasmodial efficacy, with a mean particle size of 150 nm, and they have many favorable properties for parenteral administration, such as biocompatibility, physical stability, and ease of preparation.


Assuntos
Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Emulsões/química , Etanolaminas/administração & dosagem , Etanolaminas/farmacologia , Fluorenos/administração & dosagem , Fluorenos/farmacologia , Malária/tratamento farmacológico , Plasmodium berghei/patogenicidade , Animais , Antimaláricos/química , Artemeter , Artemisininas/química , Etanolaminas/química , Feminino , Fluorenos/química , Lumefantrina , Masculino , Camundongos
8.
J Fluoresc ; 24(3): 775-86, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24492956

RESUMO

Eight novel chlorinated fluorescent proteins-labeling probes with a linker and reactive group were prepared in 7 steps by the reaction of chlorinated resorcinols with 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. Structures of target compounds and intermediates were determined via IR, MS, (1)H NMR and element analysis. The spectral properties of the chlorinated fluoresceins were studied. These fluorescent probes showed absorbance peaks at 508-536 nm and fluorescence peaks at 524-550 nm. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. The probes were used for fluorescence imaging of cells in order to investigate whether they can conjugate to cells. The fluorescence imaging of living cells showed that they were localized in cell nucleus. However, they were localized in cytosol of chemically fixed cells. These probes will be useful reagents for the preparation of stable fluorescent conjugates.


Assuntos
Fluoresceínas/síntese química , Corantes Fluorescentes/síntese química , Halogenação , Proteínas/química , Coloração e Rotulagem/métodos , Núcleo Celular/metabolismo , Células Cultivadas , Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia de Fluorescência , Osteoblastos/citologia , Osteoblastos/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Infravermelho
9.
Eur J Pharm Sci ; 195: 106725, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346565

RESUMO

The limited penetration of nanocarriers into tumors and the slow release of drugs from these carriers to tumor cells are significant challenges in cancer therapy. In this study, we developed a novel drug delivery carrier derived from mesoporous silica, dually modified with the tumor-homing cyclic peptide iRGD (CRGDKGPDC) and the pH-responsive polymer poly(2-ethyl-2-oxazoline) (PEOz) for treating triple-negative breast cancer. The carrier selectively bound to the αvß3 integrin receptor, which is specifically expressed in MDA-MB-231 breast cancer cells and vessels. Subsequently, it penetrated deep into the tumor parenchyma through NRP-1 receptor-dependent internalization, with the drug-loaded particles releasing drugs rapidly in the acidic cytoplasmic environment. Results indicated that the drug release rate of PEOz-modified formulations was pH-dependent. Lysosomal escape experiments demonstrated that PEOz-modified particles efficiently escaped lysosomes to release drugs. In vitro cytotoxicity assays revealed that iRGD-functionalized particles were more cytotoxic to NRP-1-positive MDA-MB-231 cells compared to NRP-1-negative MCF-7 cells. Cellular uptake studies demonstrated that iRGD mediated enhanced endocytosis of nanoparticles into MDA-MB-231 cells. In vitro tumor cell spheroid penetration assays confirmed that the PEOz and iRGD dual-modified carrier facilitated deeper distribution of DOX in multicellular spheroids compared to free DOX. Moreover, in a nude mouse model of triple-negative breast cancer, the dual-modified drug-loaded carrier significantly inhibited tumor growth without inducing weight loss or liver and kidney damage. This dual-modified mesoporous silica presents a novel and promising delivery carrier for enhancing cancer treatment.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Doxorrubicina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Dióxido de Silício , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
10.
Int J Biol Macromol ; 259(Pt 1): 129111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176495

RESUMO

The damaged skin for some reasons is vulnerable to invasion by bacteria and other harmful microorganisms, leading to delay of the wound healing. In order to promote the infected wound healing, curcumin was loaded with chitosan-based hydrogel was formed through phenylborate ester bonding and its properties and effects on the S. aureus-infected wound healing was tested. It was found the hydrogel showed good antioxidation on the intracellular reactive oxygen species, inhibition on the growth of S. aureus, and acceleration the infected skin healing. The ablity of hydrogel due to its regulating inflammation, promoting angiogenesis and collagen synthesis in the wound site. This research work suggested that the developed multifunctional hydrogel might be a beneficial treatment for the infected wound healing.


Assuntos
Quitosana , Curcumina , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Humanos , Curcumina/farmacologia , Staphylococcus aureus , Hidrogéis/farmacologia , Cicatrização , Antibacterianos/farmacologia
11.
J Inflamm Res ; 17: 919-931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370468

RESUMO

Background: Systemic inflammatory response is a hallmark of cancer and plays a significant role in the development and progression of various malignant tumors. This research aimed to estimate the prognostic function of the C-reactive protein-albumin ratio (CAR) in patients undergoing hepatectomy for hepatocellular carcinoma (HCC) and compare it with other inflammation-based prognostic scores, including the neutrophil-lymphocyte ratio, platelet-lymphocyte ratio, monocyte-lymphocyte ratio, systemic immune inflammation index, prognostic index, Glasgow prognostic score, and modified Glasgow prognostic score. Methods: Retrospective analysis was conducted on data from 1039 HCC cases who underwent curative liver resection. The prognostic performance of CAR was compared with other scores using the area under the time-dependent receiver operating characteristic (t-ROC) curve. Multivariable Cox regression analyses were performed to confirm independent predictors for disease-free survival (DFS) and overall survival (OS). Results: The area under the t-ROC curve for CAR in the evaluation of DFS and OS was significantly greater than that of other scores and alpha-fetoprotein (AFP). Patients were stratified based on the optimal cut-off value of CAR, and the data revealed that both DFS and OS were remarkably worse in the high-CAR set compared to the low-CAR set. Multivariable Cox analysis demonstrated that CAR was an independent prognostic parameters for assessing DFS and OS. Regardless of AFP levels, all patients were subsequently divided into significantly different subgroups of DFS and OS based on CAR risk stratification. Similar results were observed when applying CAR risk stratification to other scoring systems. CAR also showed good clinical applicability in patients with different clinical features. Conclusion: CAR is a more effective inflammation-based prognostic marker than other scores and AFP in predicting DFS as well as OS among patients with HCC after curative hepatectomy.

12.
Int J Biol Macromol ; 232: 123271, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36646352

RESUMO

The most important function of skin is to prevent biological dehydration and protect internal structures from the environment. When a wound becomes infected, the bacteria cause a sustained inflammatory response at the infected site, further delaying the healing process. Therefore, the search for better antibacterial strategies has become a topic of great concern. Therefore, the development of multifunctional hydrogels with antibacterial properties, ROS removal, and hemostasis is urgently required for promoting wound healing process. Chitosan is the only cationic natural polysaccharide with good biocompatibility, antibacterial and hemostatic ability. It is a candidate material to prepare hydrogel wound dressing. Hyaluronic acid (HA) is a natural biological macromolecule that belongs to a group of heteropolysaccharides known as non-sulfated glycosaminoglycans. It is a major component of the skin extracellular matrix (ECM) and is involved in inflammation, angiogenesis, and tissue regeneration. Here, the hydrogel was designed with the natural macromolecular of the gallic acid-grafted quaternized chitosan (GA-QCS) and oxidized hyaluronic acid (OHA) via Schiff base and/or Michael addition reaction. It was found that the GA-QCS/OHA hydrogel exhibited multifunctional capabilities with injectable, hemostasis, degradation, and release of medicines. In addiation, GA-QCS/OHA hydrogels exhibited remarkable antioxidant and migration promoting effects in vitro. And the mupirocin-loaded GA-QCS/OHA hydrogels had inhibitory effects on E. coli (Gram-negative bacterium) and S. aureus (Gram-positive bacterium) in vitro. A full-thickness skin of S. aureus infection mouse wound model was used to test the bioactive effect of the hydrogels and the accelerated wound healing was obtained due to the inhibiting the proinflammatory factor TNF-α and upregulating the vascularization factor CD31. This study proposed an effective strategy based on antioxidant, antibacterial, self-healing multifunctional hydrogel for wound healing under various infectious complications. This natural macromolecular hydrogel could act as an effective reactive oxygen species scavenger to promote the wound healing in the future.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Antioxidantes/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Staphylococcus aureus , Escherichia coli , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química
13.
J Mater Chem B ; 11(13): 2830-2851, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916631

RESUMO

The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.


Assuntos
Pele , Cicatrização , Humanos , Administração Cutânea , Agulhas , Sistemas de Liberação de Medicamentos
14.
ACS Biomater Sci Eng ; 9(2): 1089-1103, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36700559

RESUMO

The oxygen-consuming property of photodynamic therapy (PDT) affects its effects and aggravates tumor hypoxia, thus upregulating the vascular endothelial growth factor (VEGF) to exacerbate tumor metastasis and lead to treatment failure. Therefore, it is necessary to monitor the dynamic changes in the factors related to PDT and tumor development trends in real time, thus helping to improve PDT efficiency. This study fabricated a fluorescent probe, TPE-2HPro, and a fluorescein-labeled aptamer probe, FAM-AptamerVEGF, to detect hydrogen peroxide (H2O2) and VEGF through the photoinduced electron-transfer effect and the specific affinity of the aptamer to VEGF, respectively. The two probes were loaded into the inner pores and absorbed on the surface of polydopamine coating-wrapped mesoporous silica nanoparticles (MSN@PDA) to construct the dual-probe-loaded system, MSNTH@PDAApt, which was kept stable in fetal bovine serum (FBS) solution and achieved pH-responsive release behavior, thus helping to increase the accumulation of the two probes in tumor cells. The dichloroacetic acid-mediated in vitro antitumor tests showed that the changing trends of H2O2 and VEGF levels were consistent with the results of related mechanism studies and could be monitored by MSNTH@PDAApt. The in vitro chlorin e6 (Ce6)-mediated PDT treatment demonstrated that when the illumination condition was 650 nm, 50 mW/cm2 for 10 min, cells were more inclined to metastasis and invasion rather than death due to a substantial increase in VEGF expression at the low Ce6 concentrations. With the increase of the Ce6 concentration, the growth of the H2O2 level gradually exceeded that of VEGF, and the reactive oxygen species (ROS)-mediated cell death dominated when the Ce6 concentration was about 2 times its IC50 values. Besides, hypoxia also affected the H2O2 and VEGF changes. These results demonstrated that MSNTH@PDAApt could precisely monitor and assess the tumor development trends during PDT treatment, thus helping improve the treatment effect.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fator A de Crescimento do Endotélio Vascular , Peróxido de Hidrogênio/farmacologia , Neoplasias/tratamento farmacológico
15.
ACS Biomater Sci Eng ; 9(5): 2470-2482, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084356

RESUMO

In daily life and during surgery, the skin, as the outermost organ of the human body, is easily damaged to form wounds. If the wound was infected by the bacteria, especially the drug-resistant bacteria such as methicillin-resistant staphylococcus aureus (MRSA), it was difficult to recover. Therefore, it was important to develop the safe antimicrobial strategy to inhibit bacterial growth in the wound site, in particular, to overcome the problem of bacterial drug resistance. Here, the Ag/AgBr-loaded mesoporous bioactive glass (Ag/AgBr-MBG) was prepared, which had excellent photocatalytic properties under simulated daylight for rapid antibacterial activity within 15 min by generating reactive oxygen species (ROS). Meanwhile, the killing rate of Ag/AgBr-MBG against MRSA was 99.19% within 15 min, which further reduced the generation of drug-resistant bacteria. In addition, Ag/AgBr-MBG particles could disrupt bacterial cell membranes, showing the broad-spectrum antibacterial properties and promoting tissue regeneration and infected wound healing. Ag/AgBr-MBG particles might have potential applications as a light-driven antimicrobial agent in the field of biomaterials.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Cicatrização , Antibacterianos/farmacologia , Vidro , Prata/farmacologia
16.
ACS Appl Mater Interfaces ; 15(33): 39847-39863, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578471

RESUMO

The wet environment of water or tissue in bleeding wounds poses significant challenges to the adhesion performance of existing hemostatic adhesives. An intelligent composite adhesive prepared by doping starch-based silicate micro-nanograded porous particles (MBC@CMS) with dopamine-hyperbranched polymers (HPD, 7800 Mw) synthesized by the Michael addition reaction could be triggered by water to form a glue (MBC@CMS-HPD). The results indicated that MBC@CMS-HPD could still have adhesion properties under running water washing and water immersion and could effectively seal the water outlet. The results of the glue-forming mechanism showed that MBC@CMS-HPD had better wettability than water, which could eliminate water molecules at the wet adhesive surface. When contacted with water, the agglomeration of the HPD hydrophobic chain increases the exposure of the catechol group, and the relative atomic mass of the N element on the surface increases from 2.8 to 4.8%. The adhesion of MBC@CMS-HPD was enhanced and stable. MBC@CMS-HPD showed significant hemostasis effects in five injury bleeding models of Sprague-Dawley (SD) rats and New Zealand rabbits. Especially in the fatal femoral artery bleeding model of New Zealand rabbits, MBC@CMS-HPD reduced the amount of bleeding by 75% and shortened the bleeding time by 78% compared with the a-cyanoacrylate adhesives. The results of the coagulation mechanism showed that compared with HPD, MBC@CMS-HPD could activate both endogenous and exogenous coagulation pathways. Among them, after contact with blood, HPD formed a gel to close the blood outlet, and MBC@CMS entered the wound to activate the internal and external coagulation pathways. In addition, HPD and MBC@CMS had good histocompatibility and degradability, which has the potential to be applied to different wounds.


Assuntos
Hemostáticos , Adesivos Teciduais , Ratos , Animais , Coelhos , Hemostáticos/farmacologia , Hemostáticos/química , Adesivos/farmacologia , Dopamina/farmacologia , Dopamina/química , Porosidade , Água/química , Ratos Sprague-Dawley , Hemostasia , Hemorragia/terapia , Adesivos Teciduais/química
17.
Int J Nanomedicine ; 17: 2611-2628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712639

RESUMO

In recent years, chemodynamic therapy (CDT) has received extensive attention as a novel means of cancer treatment. The CDT agents can exert Fenton and Fenton-like reactions in the acidic tumor microenvironment (TME), converting hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH). However, the pH of TME, as an essential factor in the Fenton reaction, does not catalyze the reaction effectively, hindering its efficiency, which poses a significant challenge for the future clinical application of CDT. Therefore, this paper reviews various strategies to enhance the antitumor properties of nanomaterials by modulating tumor acidity. Ultimately, the performance of CDT can be further improved by inducing strong oxidative stress to produce sufficient ·OH. In this paper, the various acidification pathways and proton pumps with potential acidification functions are mainly discussed, such as catalytic enzymes, exogenous acids, CAIX, MCT, NHE, NBCn1, etc. The problems, opportunities, and challenges of CDT in the cancer field are also discussed, thereby providing new insights for the design of nanomaterials and laying the foundation for their future clinical applications.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Radical Hidroxila/metabolismo , Neoplasias/terapia , Microambiente Tumoral
18.
Biomolecules ; 12(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36139080

RESUMO

Diabetes-related chronic wounds are often accompanied by a poor wound-healing environment such as high glucose, recurrent infections, and inflammation, and standard wound treatments are fairly limited in their ability to heal these wounds. Metal-organic frameworks (MOFs) have been developed to improve therapeutic outcomes due to their ease of engineering, surface functionalization, and therapeutic properties. In this review, we summarize the different synthesis methods of MOFs and conduct a comprehensive review of the latest research progress of MOFs in the treatment of diabetes and its wounds. State-of-the-art in vivo oral hypoglycemic strategies and the in vitro diagnosis of diabetes are enumerated and different antimicrobial strategies (including physical contact, oxidative stress, photothermal, and related ions or ligands) and provascular strategies for the treatment of diabetic wounds are compared. It focuses on the connections and differences between different applications of MOFs as well as possible directions for improvement. Finally, the potential toxicity of MOFs is also an issue that we cannot ignore.


Assuntos
Anti-Infecciosos , Diabetes Mellitus , Estruturas Metalorgânicas , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Glucose , Humanos , Hipoglicemiantes , Íons , Estruturas Metalorgânicas/uso terapêutico
19.
Biomater Adv ; 133: 112651, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034817

RESUMO

Porous titanium implants were popularly fabricated to promote bone formation. A desirable porous scaffold was recommended to be with porosity of >60% or/and pore size of >300 µm for better osteointegration. However, whether the pore size and porosity could be randomly selected within the recommended values? And what is the correlation between pore size and porosity for accelerating osteointegration? In this study, porous titanium with cubic cell structure was produced by selective laser melting. The designed porosities of scaffolds with 700-µm pore size were 40%, 70% and 90%; and the pore sizes of scaffolds with 70% porosity were 400, 700 and 900 µm. The in vitro osteogenic potential and in vivo bone formation were investigated. Results showed that porosity and pore size could be tuned by altering strut size, which was further directly responsible for mechanical properties. Besides, pore size and porosity synergistically contributed to osteogenic activity in vitro and new bone formation in vivo. In regard to pore sizes herein, the optimized one for better osteogenic response and bone forming ability was ~600-700 µm (p70). Too smaller or too larger pore size might more or less hinder cellular behaviors and bone regeneration, even if both pore size (300-900 µm) and porosity (70%) were within the recommended value range. At a constant pore size (~600-700 µm), p70 and p90 with higher porosity was more conductive to biological effects, compared with p40. As a result, pore-size variation revealed more significant influence on osteogenesis, compared with variation of porosity within recommended values. However, the applicable porosity within recommended values should be designed with the consideration of specific load-bearing conditions. This study helps to provide guidance for designing porous scaffolds with appropriate mechanical strengths and effective bone-forming ability, so as to develop better custom-made bone substitutes.


Assuntos
Substitutos Ósseos , Osteogênese , Substitutos Ósseos/química , Porosidade , Impressão Tridimensional , Titânio/química
20.
Eur J Med Chem ; 244: 114843, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265281

RESUMO

Cancer seriously endangers human life and health. Recently, the development of AIEgens with aggregation-induced emission (AIE) effect as a new generation of photosensitizers (PSs) to circumvent aggregation-induced fluorescence quenching and reduction of ROS generation has received extensive attention in photodynamic therapy (PDT), a non-invasive anticancer therapy. Rational molecular design can enhance the photosensitization of AIE PSs to achieve effective PDT and can realize the construction of functionalized AIE PSs and synergistic therapy based on AIE PSs. To improve the efficacy of AIE PSs for cancer treatment, many groups have conducted molecular design studies and produced exciting results. This review summarizes the molecular design strategies of three types of AIE PSs for effective photodynamic therapy, focusing on the design strategies of pure organic small molecule type AIE PSs, and reviews the existing design strategies of metal complexes and conjugated polymers. Subsequently, the design strategy to achieve synergistic treatment of AIE PSs from molecular modifications is summarized. The challenges and prospects of the AIE PSs research field are further discussed.


Assuntos
Antineoplásicos , Desenho de Fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Fluorescência , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA