Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514749

RESUMO

The near-space atmosphere is thin, and the atmospheric refraction and scattering on optical observation is very small, making it very suitable for wide-area and high-resolution surveillance using high-altitude balloon platforms. This paper adopts a 9344 × 7000 CMOS sensor to obtain high-resolution images, generating large-field-of-view imaging through the swing scanning of the photoelectric sphere and image stitching. In addition, a zoom lens is designed to achieve flexible applications for different scenarios, such as large-field-of-view and high-resolution imaging. The optical design results show that the camera system has good imaging quality within the focal length range of 320 mm-106.7 mm, and the relative distortion values at different focal lengths are less than 2%. The flight results indicate that the system can achieve seamless image stitching at a resolution of 0.2 m@20 km and the imaging field of view angle exceeds 33°. This system will perform other near-space flight experiments to verify its ultra-wide (field of view exceeding 100°) high-resolution imaging application.

2.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632304

RESUMO

Aiming to address the problem of moving mirror speed fluctuations in moving mirror control systems, an improved active disturbance rejection double closed-loop controller (IADR-DCLC) is proposed and verified by simulation to realize the high-performance control of a moving mirror control system. First, the mathematical model of a rotary-type voice coil motor (RT VCM) is established, and the relationship between the angular velocity of the RT VCM and the optical path scanning velocity is analyzed. Second, in order to suppress the model uncertainty and external disturbance of the system, an improved active disturbance rejection controller (IADRC) is proposed. Compared with a conventional ADRC, the tracking differentiator of the proposed IADRC is replaced with desired signal optimization (DSO), and the actual speed is introduced to the extended state observer (ESO). The IADRC is used in the position-speed double closed-loop control model. Finally, the simulation results show that the IADR-DCLC has not only a good tracking effect but also a good anti-interference ability and can meet the requirements of the moving mirror control system for the uniformity of optical-path scanning speed and accurate control of the position of the moving mirror.

3.
Int J Biol Macromol ; 265(Pt 2): 130987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508559

RESUMO

Among the common natural biomolecules, the excellent properties of proteins have attracted extensive attention from researchers for functional applications, however, in native form proteins have many limitations in the performance of their functional attribute. However, with the deepening of research, it has been found that the combination of natural active substances such as polyphenols, polysaccharides, etc. with protein molecules will make the composite system have stronger functional properties, while the utilization of pH-driven method, ultrasonic treatment, heat treatment, etc. not only provides a guarantee for the overall protein-based composite system, but also gives more possibilities to the protein-composite system. Protein composite systems are emerging in the fields of novel active packaging, functional factor delivery systems and gel systems with high medical value. The products of these protein composite systems usually have high functional properties, mainly due to the interaction of the remaining natural active substances with protein molecules, which can be broadly categorized into covalent interactions and non-covalent interactions, and which, despite the differences in these interactions, together constitute the cornerstone for the stability of protein composite systems and for in-depth research.


Assuntos
Alimentos , Hipertermia Induzida , Embalagem de Medicamentos , Polifenóis , Embalagem de Produtos , Embalagem de Alimentos
4.
Foods ; 13(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38890971

RESUMO

As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.

5.
Int J Biol Macromol ; 270(Pt 2): 132513, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777018

RESUMO

With the increasingly mature research on protein-based multi-component systems at home and abroad, the current research on protein-based functional systems has also become a hot spot and focus in recent years. In the functional system, the types of functional factors and their interactions with other components are usually considered to be the subjective factors of the functional strength of the system. Because this process is accompanied by the transfer of protons and electrons in the system, it has antioxidant, antibacterial and anti-inflammatory properties. Polyphenols and polysaccharides have the advantages of wide source, excellent functionality and good compatibility with proteins, and have become excellent and representative functional factors. However, polyphenols and polysaccharides are usually accompanied by poor stability, poor solubility and low bioavailability when used as functional factors. Therefore, the effect of separate release and delivery will inevitably lead to non-significant or direct degradation. After forming a multi-component composite system with the protein, the functional factor will form a stable system driven by hydrogen bonds, hydrophobic forces and electrostatic forces between the functional factor and the protein. When used as a delivery system, it will protect the functional factor, and when released, through the specific recognition of the cell membrane receptor signal, the effect of fixed-point delivery is achieved. In addition, this multi-component composite system can also form a functional composite film by other means, which has a long-term significance for prolonging the shelf life of food and carrying out specific antibacterial.


Assuntos
Embalagem de Alimentos , Polifenóis , Polissacarídeos , Polifenóis/química , Polissacarídeos/química , Embalagem de Alimentos/métodos , Proteínas/química , Humanos , Antioxidantes/química , Antioxidantes/farmacologia
6.
ISA Trans ; 138: 603-610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36841720

RESUMO

Scanning acoustic microscopy (SAM) technique has been applied to defect inspection in electronic devices. With the increase of packaging density, detection of the micro-defects in high density devices becomes more and more challenging. The SAM test is suffering from sacrificing the spatial resolution to reach a certain penetration depth of the ultrasonic waves. So it is necessary to enhance the resolution level of the SAM image. In this paper, a wavelet based resolution enhancement technique was investigated to reconstruct a high quality image for SAM test of the flip chip packages. The stationary wavelet transform was adopted to decompose the captured SAM image into four frequency subbands, and the high frequency subbands were enhanced by adding the difference matrix in the intermediate stage, and a super resolution SAM image was derived from combining all the subbands by using the Inverse Discrete Wavelet Transform. Then the solder joints segmented from the SR-SAM image were classified by using the SVM algorithm. The results validated that the proposed technique is effective to improve the detection accuracy of SAM test.

7.
Food Res Int ; 169: 112823, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254399

RESUMO

Novel food matrices (such as microalgae, plants, fungi, and microbial proteins) with high protein content and biological value, good amino acid profile, and functionality have been explored. Phycocyanin and active polysaccharides extracted from Spirulina platensis are used as food additives, treatment of colitis, as well as obesity prevention. However, most of the remaining Spirulina platensis residues are mainly used as fish feed at present. 3D food printing is one of the promising development techniques used in the food industry. The aim of this study was to develop a novel 3D printing material of Spirulina platensis residues with shear thinning characteristics, high viscosity and rapid recovery. The effects of moisture content and pretreatment method on the rheological properties of Spirulina platensis residues were clarified. Scanning electron microscopy was used to observe the microstructure and texture profile analysis was used to determine the texture characteristics of Spirulina platensis residues, rheology was used to determine the key 3D printing factors such as viscosity and modulus of Spirulina platensis residues. More importantly, the printing process could be realized under ambient conditions. The development of microalgae residue ink promoted the high-value and comprehensive utilization of microalgae, and also broadened the application of microalgae in the food field.


Assuntos
Tinta , Microalgas , Animais , Polissacarídeos , Impressão Tridimensional , Reologia
8.
ISA Trans ; 119: 196-207, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33676738

RESUMO

High energy efficiency and tracking accuracy are both vital for hydraulic lifting servo systems. However, the appropriate hardware configuration and its corresponding nonlinear controller is always a problem to be solved. To address this multi-objective task, an integrated energy-saving and position tracking controller is developed. Specifically, to reduce the substantial energy dissipation, a system configuration referring to the structure of the three-position-six-way valve is proposed. To ensure accurate tracking performance, a hybrid observer-based output feedback controller is developed. By doing so, the function of flow regeneration and the property of flow matching are achieved, and the tracking accuracy is guaranteed by using only position signal. To validate the effectiveness of the proposed method, a common Lyapunov function is used to prove the stability of the multi-model system, and case studies are conducted to demonstrate the system performance.

9.
ACS Appl Mater Interfaces ; 14(40): 46010-46022, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173967

RESUMO

Solar-driven seawater desalination is considered a promising method for alleviating the water crisis worldwide. In recent years, significant efforts have been undertaken to optimize heat management and minimize salt blockage during solar-driven seawater desalination. However, it remains challenging to achieve an efficient and stable seawater evaporator simply and practically. Here, we designed and prepared a novel three-dimensional (3D) water channel evaporator (3D WCE) equipped with a Janus CNT@PBAT fabric (JCPF). The as-prepared Janus CNT@PBAT fabric has broad-band light absorption (∼97.8%), excellent superhydrophobicity (∼162°), and photothermal properties. After optimizing the structure of the thermal insulator, our designed evaporator could realize the equilibrium between enhanced thermal management and sufficient water supply. As a result, the as-prepared evaporator achieved an excellent evaporation rate of 1.576 kg·m-2·h-1 and an energy efficiency of over 92.7% under 1 sun irradiation in 3.5 wt % saline water. Moreover, this evaporator also revealed good salt rejection performance compared to the traditional two-dimensional (2D) water channel evaporator (2D WCE) in high saline water, which could maintain stable evaporation rates under long-term evaporation of 8 h. Our study may develop a simple method for the design and fabrication of a low-cost, effective, and stable solar-driven evaporator for seawater desalination.

10.
Sci Total Environ ; 780: 146369, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773342

RESUMO

Region-specific Research and Development (R&D) of microalga-derived product systems are crucial if "biotech's green gold" is to be explored in a rational and economically viable way. Coastal zones, particularly the locations around the equator, are typically considered to be optimum cultivation sites due to stable annual temperature, light, and ready availability of seawater. However, a 'cradle-to-grave' assessment of the development of microalgal biotechnology in these areas, not only under the laboratory conditions, but also in the fields has not yet been demonstrated. In this study, to evaluate the viability of microalga-derived multi-product technology, we showed the development of microalgal biotechnology in coastal zones for aquaculture and food. By creating and screening a (sub)tropical microalgal collection, a Chlorella strain MEM25 with a robust growth in a wide range of salinities, temperatures, and light intensities was identified. Evaluation of the economic viability and performance of different scale cultivation system designs (500 L and 5000 L closed photobioreactors and 60,000 L open race ponds, ORPs) at coastal zones under geographically specific conditions showed the stable and robust characteristics of MEM25 across different production system designs and various spatial and temporal scales. It produces high amounts of proteins and polyunsaturated fatty acids (PUFAs) in various conditions. Feeding experiments reveal the nutritional merits of MEM25 as food additives where PUFAs and essential amino acids are enriched and the algal diet improves consumers' growth. Economic evaluation highlights an appreciable profitability of MEM25 production as human or animal food using ORP systems. Therefore, despite the pros and cons, sound opportunities exist for the development of market-ready multiple-product systems by employing region-specific R&D strategies for microalgal biotechnology.


Assuntos
Chlorella , Microalgas , Animais , Aquicultura , Biomassa , Biotecnologia , Humanos , Desenvolvimento Sustentável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA