Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230722

RESUMO

At present, most patients with oral squamous cell carcinoma (OSCC) are in the middle or advanced stages at the time of diagnosis. Advanced OSCC patients have a poor prognosis after traditional therapy, and the complex heterogeneity of OSCC has been proven to be one of the main reasons. Single-cell sequencing technology provides a powerful tool for dissecting the heterogeneity of cancer. However, most of the current studies at the single-cell level are static, while the development of cancer is a dynamic process. Thus, understanding the development of cancer from a dynamic perspective and formulating corresponding therapeutic measures for achieving precise treatment are highly necessary, and this is also one of the main study directions in the field of oncology. In this study, we combined the static and dynamic analysis methods based on single-cell RNA-Seq data to comprehensively dissect the complex heterogeneity and evolutionary process of OSCC. Subsequently, for clinical practice, we revealed the association between cancer heterogeneity and the prognosis of patients. More importantly, we pioneered the concept of pseudo-time score of patients, and we quantified the levels of heterogeneity based on the dynamic development process to evaluate the relationship between the score and the survival status at the same stage, finding that it is closely related to the prognostic status. The pseudo-time score of patients could not only reflect the tumor status of patients but also be used as an indicator of the effects of drugs on the patients so that the medication strategy can be adjusted on time. Finally, we identified candidate drugs and proposed precision medication strategies to control the condition of OSCC in two respects: treatment and blocking.

2.
Nat Commun ; 12(1): 1582, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707441

RESUMO

Double-stranded RNA (dsRNA) is a virus-encoded signature capable of triggering intracellular Rig-like receptors (RLR) to activate antiviral signaling, but whether intercellular dsRNA structural reshaping mediated by the N6-methyladenosine (m6A) modification modulates this process remains largely unknown. Here, we show that, in response to infection by the RNA virus Vesicular Stomatitis Virus (VSV), the m6A methyltransferase METTL3 translocates into the cytoplasm to increase m6A modification on virus-derived transcripts and decrease viral dsRNA formation, thereby reducing virus-sensing efficacy by RLRs such as RIG-I and MDA5 and dampening antiviral immune signaling. Meanwhile, the genetic ablation of METTL3 in monocyte or hepatocyte causes enhanced type I IFN expression and accelerates VSV clearance. Our findings thus implicate METTL3-mediated m6A RNA modification on viral RNAs as a negative regulator for innate sensing pathways of dsRNA, and also hint METTL3 as a potential therapeutic target for the modulation of anti-viral immunity.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , RNA de Cadeia Dupla/genética , RNA Viral/genética , Vírus da Estomatite Vesicular Indiana/genética , Células A549 , Adenosina/genética , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Metiltransferases/genética , Camundongos , Células RAW 264.7 , Transdução de Sinais/imunologia , Células Vero
3.
Oncotarget ; 7(47): 78069-78082, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27801666

RESUMO

M2-type pyruvate kinase (PKM2) contributes to the Warburg effect. However, it remains unknown as to whether PKM2 has an inhibitory effect on mitochondrial function. We report in this work that PKM2 overexpression inhibits the expression of Drp1 and results in the mitochondrial fusion. The ATP production was found to be decreased, the mtDNA copy number elevated and the expression level of electron transport chain (ETC) complex I, III, V depressed in PKM2 overexpressed cells. PKM2 overexpression showed a decreased p53 protein level and a shorter p53 half-life. In contrast, PKM2 knockdown resulted in increased p53 expression and prolonged half-life of p53. PKM2 could directly bind with both p53 and MDM2 and promote MDM2-mediated p53 ubiquitination. The dimeric PKM2 significantly suppressed p53 expression compared with the other PKM2 mutants. The reverse relationship between PKM2 and Drp1 was further confirmed in a large number of clinical samples. Taken together, the present results highlight a new mechanism that link PKM2 to mitochondrial function, based on p53-Drp1 axis down regulation, revealing a novel therapeutic target in patients with abnormal mitochondria.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Membrana/biossíntese , Dinâmica Mitocondrial/fisiologia , Hormônios Tireóideos/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Transporte/metabolismo , Células HCT116 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Transfecção , Proteínas de Ligação a Hormônio da Tireoide
4.
Cell Signal ; 27(7): 1525-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25778902

RESUMO

Surgery-induced inflammation has been associated with cancer recurrence and metastasis in colorectal cancer (CRC). As a constituent of gram-negative bacteria, lipopolysaccharide (LPS) is frequently abundant in the peri-operative window. However, the definite roles of LPS in tumour progression remain elusive. Here we reported that LPS treatment increased PKM expression through activation of NF-κB signalling pathway, and knockdown of PKM reversed LPS-induced TNF-α, IL-1ß production and cell proliferation in CRC cells. We further showed that the PKM2 but not PKM1 mediated the pro-inflammatory and proliferative effects of LPS. Interestingly, LPS promoted PKM2 binding to the STAT3 promoter to enhance STAT3 expression and its subsequent nuclear translocation. Depletion of STAT3 decreased PKM2-induced TNF-α and IL-1ß expression, indicating that STAT3 mediates the pro-inflammatory effects of PKM2. Furthermore, it is the protein kinase activity but not the pyruvate kinase activity of PKM2 that is required for inflammatory cytokine production. Collectively, our findings reveal the NF-κB-PKM2-STAT3 axis as a novel mechanism for the regulation of TNF-α and IL-1ß production and suggest the importance of PKM2 as a key inflammatory mediator in inflammatory microenvironment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ensaio de Imunoadsorção Enzimática , Humanos , Interleucina-1beta/análise , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA