Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(12): e2117882119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290111

RESUMO

Electron bifurcation, an energy-conserving process utilized extensively throughout all domains of life, represents an elegant means of generating high-energy products from substrates with less reducing potential. The coordinated coupling of exergonic and endergonic reactions has been shown to operate over an electrochemical potential of ∼1.3 V through the activity of a unique flavin cofactor in the enzyme NADH-dependent ferredoxin-NADP+ oxidoreductase I. The inferred energy landscape has features unprecedented in biochemistry and presents novel energetic challenges, the most intriguing being a large thermodynamically uphill step for the first electron transfer of the bifurcation reaction. However, ambiguities in the energy landscape at the bifurcating site deriving from overlapping flavin spectral signatures have impeded a comprehensive understanding of the specific mechanistic contributions afforded by thermodynamic and kinetic factors. Here, we elucidate an uncharacteristically low two-electron potential of the bifurcating flavin, resolving the energetic challenge of the first bifurcation event.


Assuntos
Elétrons , Flavinas , Dinitrocresóis , Transporte de Elétrons , Ferredoxina-NADP Redutase/metabolismo , Flavinas/metabolismo , Oxirredução
2.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037354

RESUMO

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Assuntos
Bactérias , Coenzimas , Euryarchaeota , Mesna , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Coenzimas/biossíntese , Euryarchaeota/metabolismo , Mesna/metabolismo , Metano/metabolismo , Oxirredução , Fosfatos/metabolismo
3.
J Biol Chem ; 299(12): 105403, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229399

RESUMO

We have investigated the kinetics of NAD+-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD+ through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD+; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting kred of 36 ± 1.6 s-1 and apparent KdNADPH of 5 ± 1.2 µM. Reduction of one of the [4Fe-4S] clusters of NfnI occurs within a second, indicating that in the absence of NAD+, the system can bifurcate and generate low-potential electrons without NAD+. When enzyme is reduced by NADPH in the absence of NAD+ but the presence of ferredoxin, up to three equivalents of ferredoxin become reduced, although the reaction is considerably slower than seen during steady-state turnover. Bifurcation appears to be limited by transfer of the first, high-potential electron into the high-potential pathway. Ferredoxin reduction without NAD+ demonstrates that electron bifurcation is an intrinsic property of the bifurcating FAD and is not dependent on the simultaneous presence of NAD+ and ferredoxin. The tight coupling between NAD+ and ferredoxin reduction observed under multiple-turnover conditions is instead simply due to the need to remove reducing equivalents from the high-potential electron pathway under multiple-turnover conditions.


Assuntos
Proteínas Arqueais , Ferredoxinas , Oxirredutases , Pyrococcus furiosus , Ferredoxinas/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxirredução , Oxirredutases/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/metabolismo
4.
J Biol Chem ; 295(28): 9445-9454, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32409585

RESUMO

Cyanobacterial Hox is a [NiFe] hydrogenase that consists of the hydrogen (H2)-activating subunits HoxYH, which form a complex with the HoxEFU assembly to mediate reactions with soluble electron carriers like NAD(P)H and ferredoxin (Fdx), thereby coupling photosynthetic electron transfer to energy-transforming catalytic reactions. Researchers studying the HoxEFUYH complex have observed that HoxEFU can be isolated independently of HoxYH, leading to the hypothesis that HoxEFU is a distinct functional subcomplex rather than an artifact of Hox complex isolation. Moreover, outstanding questions about the reactivity of Hox with natural substrates and the site(s) of substrate interactions and coupling of H2, NAD(P)H, and Fdx remain to be resolved. To address these questions, here we analyzed recombinantly produced HoxEFU by electron paramagnetic resonance spectroscopy and kinetic assays with natural substrates. The purified HoxEFU subcomplex catalyzed electron transfer reactions among NAD(P)H, flavodoxin, and several ferredoxins, thus functioning in vitro as a shuttle among different cyanobacterial pools of reducing equivalents. Both Fdx1-dependent reductions of NAD+ and NADP+ were cooperative. HoxEFU also catalyzed the flavodoxin-dependent reduction of NAD(P)+, Fdx2-dependent oxidation of NADH and Fdx4- and Fdx11-dependent reduction of NAD+ MS-based mapping identified an Fdx1-binding site at the junction of HoxE and HoxF, adjacent to iron-sulfur (FeS) clusters in both subunits. Overall, the reactivity of HoxEFU observed here suggests that it functions in managing peripheral electron flow from photosynthetic electron transfer, findings that reveal detailed insights into how ubiquitous cellular components may be used to allocate energy flow into specific bioenergetic products.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Synechocystis/enzimologia , Catálise , Estrutura Quaternária de Proteína , Especificidade por Substrato
5.
J Biol Chem ; 294(9): 3271-3283, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567738

RESUMO

Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.


Assuntos
Proteínas Arqueais/metabolismo , Biocatálise , Flavoproteínas Transferidoras de Elétrons/metabolismo , NAD/metabolismo , Pyrobaculum
6.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30833351

RESUMO

Photosynthesis, the process of converting solar energy into stored chemical bonds, represents the primary mechanism by which biological organisms utilize photons. Light can also be used to activate a number of photosensory compounds and proteins designed to carry out tasks, such as DNA repair, gene regulation, and synchronization with the diurnal cycle. Given that sunlight is incident upon many environments, it is not farfetched to think that life may have evolved other as-yet-undetected mechanisms to profit from solar irradiation. In this issue, Maresca and coworkers detail their observations of light-enhanced growth of several nonphotosynthetic actinobacteria, as well as describe the potential photosensitizer responsible for this phenotype and discuss the regulatory networks involved (J. A. Maresca, J. L. Keffer, P. P. Hempel, S. W. Polson, et al., J Bacteriol 201:e00740-18, 2019, https://doi.org/10.1128/JB.00740-18). This study opens the door to many intriguing questions about the use of light as information in nonphotosynthetic biological systems.


Assuntos
Actinobacteria , Fotossíntese
7.
J Biol Chem ; 293(13): 4688-4701, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29462786

RESUMO

A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV-visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to interrogate the putative bifurcating FAD. CD aided in assigning the measured reduction midpoint potentials (E° values) to individual flavins, and the E° values tested the accepted model regarding the redox properties required for bifurcation. We found that the higher-E° flavin displays sequential one-electron (1-e-) reductions to anionic semiquinone and then to hydroquinone, consistent with the reactivity seen in canonical ETFs. In contrast, the lower-E° flavin displayed a single two-electron (2-e-) reduction without detectable accumulation of semiquinone, consistent with unstable semiquinone states, as required for bifurcation. This is the first demonstration that a FixAB protein possesses the thermodynamic prerequisites for bifurcating activity, and the separation of distinct optical signatures for the two flavins lays a foundation for mechanistic studies to learn how electron flow can be directed in a protein environment. We propose that a novel optical signal observed at long wavelength may reflect electron delocalization between the two flavins.


Assuntos
Monofosfato de Adenosina/química , Proteínas de Bactérias/química , Flavoproteínas Transferidoras de Elétrons/química , Flavina-Adenina Dinucleotídeo/química , Rodopseudomonas/enzimologia , Termodinâmica
8.
Nat Chem Biol ; 13(6): 655-659, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28394885

RESUMO

The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. The unprecedented range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.


Assuntos
Elétrons , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavinas/metabolismo , Modelos Biológicos , Sítios de Ligação , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/química
9.
J Biol Chem ; 292(34): 14039-14049, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28615449

RESUMO

Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.


Assuntos
Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavodoxina/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Nitrorredutases/metabolismo , Oxirredutases/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Biocatálise , Desulfovibrio vulgaris/enzimologia , Transporte de Elétrons , Enterobacter cloacae/enzimologia , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavodoxina/química , Flavodoxina/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , Nitrorredutases/química , Nitrorredutases/genética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Pyrococcus furiosus/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mutação Silenciosa , Thermus thermophilus/enzimologia , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
10.
Acc Chem Res ; 50(9): 2410-2417, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28876046

RESUMO

How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP+ oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc1. While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.


Assuntos
Termodinâmica , Elétrons , Cinética , Oxirredução
11.
Biochemistry ; 56(32): 4177-4190, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28704608

RESUMO

The biological reduction of dinitrogen (N2) to ammonia (NH3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (Em = -320 mV) coupled to reduction of flavodoxin semiquinone (Em = -460 mV) and reduction of coenzyme Q (Em = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.


Assuntos
Azotobacter vinelandii/enzimologia , Modelos Moleculares , Complexos Multienzimáticos/química , Nitrogenase/química , Catálise , Transporte de Elétrons/fisiologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Estrutura Quaternária de Proteína
12.
J Am Chem Soc ; 139(37): 12879-12882, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28851216

RESUMO

Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The Hox→HredH+ reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol-1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the Hox→HredH+ step of catalytic proton reduction in CaI proceeds by a proton-dependent process.


Assuntos
Compostos de Cádmio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Compostos de Selênio/metabolismo , Termodinâmica , Compostos de Cádmio/química , Clostridium acetobutylicum/enzimologia , Medição da Troca de Deutério , Transporte de Elétrons , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Cinética , Conformação Molecular , Nanoestruturas/química , Oxirredução , Compostos de Selênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Am Chem Soc ; 139(28): 9544-9550, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28635269

RESUMO

An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdred that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Prótons , Termodinâmica , Biocatálise , Clostridium/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/química , Hidrogenase/isolamento & purificação , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/isolamento & purificação , Simulação de Acoplamento Molecular , Oxirredução , Potenciometria
14.
Chembiochem ; 18(23): 2295-2297, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28986941

RESUMO

Elaborate arrays of iron-sulfur clusters link active sites via a flavin that bifurcates electrons through two energetically independent paths. The structure of the heterodisulfide reductase provides insight into how methanogens conserve energy through coupling hydrogen oxidation to coordinated exergonic heterodisulfide and endergonic ferredoxin reduction in an overall thermodynamically favorable reaction.


Assuntos
Metano/metabolismo , Dióxido de Carbono/química , Transporte de Elétrons , Elétrons , Flavina-Adenina Dinucleotídeo/química , Hidrogênio/química , Hidrogenase/química , Hidrogenase/metabolismo , Metano/química , Methanococcaceae/enzimologia , Oxirredução , Oxirredutases/metabolismo
16.
Photosynth Res ; 127(1): 5-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25527460

RESUMO

The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.


Assuntos
Hidrogênio/metabolismo , Nanoestruturas/química , Complexo de Proteína do Fotossistema I/metabolismo , Biocombustíveis , Reagentes de Ligações Cruzadas/química , Citocromos c6/química , Citocromos c6/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Ferro/química , Ferro/metabolismo , Luz , Complexo de Proteína do Fotossistema I/química , Teoria Quântica , Compostos de Sulfidrila/química
17.
Proc Natl Acad Sci U S A ; 108(52): 20988-91, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160679

RESUMO

Although a number of solar biohydrogen systems employing photosystem I (PSI) have been developed, few attain the electron transfer throughput of oxygenic photosynthesis. We have optimized a biological/organic nanoconstruct that directly tethers F(B), the terminal [4Fe-4S] cluster of PSI from Synechococcus sp. PCC 7002, to the distal [4Fe-4S] cluster of the [FeFe]-hydrogenase (H(2)ase) from Clostridium acetobutylicum. On illumination, the PSI-[FeFe]-H(2)ase nanoconstruct evolves H(2) at a rate of 2,200 ± 460 µmol mg chlorophyll(-1) h(-1), which is equivalent to 105 ± 22 e(-)PSI(-1) s(-1). Cyanobacteria evolve O(2) at a rate of approximately 400 µmol mg chlorophyll(-1) h(-1), which is equivalent to 47 e(-)PSI(-1) s(-1), given a PSI to photosystem II ratio of 1.8. The greater than twofold electron throughput by this hybrid biological/organic nanoconstruct over in vivo oxygenic photosynthesis validates the concept of tethering proteins through their redox cofactors to overcome diffusion-based rate limitations on electron transfer.


Assuntos
Clostridium acetobutylicum/metabolismo , Hidrogênio/metabolismo , Nanoestruturas , Nanotecnologia/métodos , Fotossíntese , Energia Solar , Synechococcus/metabolismo , Transporte de Elétrons , Ferro/metabolismo , Cinética , Complexo de Proteína do Fotossistema I/metabolismo , Análise Espectral
18.
J Inorg Biochem ; 254: 112521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471286

RESUMO

Ferredoxins (Fds) are small proteins which shuttle electrons to pathways like biological nitrogen fixation. Physical properties tune the reactivity of Fds with different pathways, but knowledge on how these properties can be manipulated to engineer new electron transfer pathways is lacking. Recently, we showed that an evolved strain of Rhodopseudomonas palustris uses a new electron transfer pathway for nitrogen fixation. This pathway involves a variant of the primary Fd of nitrogen fixation in R. palustris, Fer1, in which threonine at position 11 is substituted for isoleucine (Fer1T11I). To understand why this substitution in Fer1 enables more efficient electron transfer, we used in vivo and in vitro methods to characterize Fer1 and Fer1T11I. Electrochemical characterization revealed both Fer1 and Fer1T11I have similar redox transitions (-480 mV and - 550 mV), indicating the reduction potential was unaffected despite the proximity of T11 to an iron­sulfur (FeS) cluster of Fer1. Additionally, disruption of hydrogen bonding around an FeS cluster in Fer1 by substituting threonine with alanine (T11A) or valine (T11V) did not increase nitrogenase activity, indicating that disruption of hydrogen bonding does not explain the difference in activity observed for Fer1T11I. Electron paramagnetic resonance spectroscopy studies revealed key differences in the electronic structure of Fer1 and Fer1T11I, which indicate changes to the high spin states and/or spin-spin coupling between the FeS clusters of Fer1. Our data implicates these electronic structure differences in facilitating electron flow and sets a foundation for further investigations to understand the connection between these properties and intermolecular electron transfer.


Assuntos
Elétrons , Ferredoxinas , Ferredoxinas/metabolismo , Fixação de Nitrogênio , Oxirredução , Transporte de Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Treonina/metabolismo
19.
J Inorg Biochem ; 251: 112428, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38008043

RESUMO

Electron carrier proteins (ECPs), binding iron-sulfur clusters, are vital components within the intricate network of metabolic and photosynthetic reactions. They play a crucial role in the distribution of reducing equivalents. In Synechocystis sp. PCC 6803, the ECP network includes at least nine ferredoxins. Previous research, including global expression analyses and protein binding studies, has offered initial insights into the functional roles of individual ferredoxins within this network. This study primarily focuses on Ferredoxin 9 (slr2059). Through sequence analysis and computational modeling, Ferredoxin 9 emerges as a unique ECP with a distinctive two-domain architecture. It consists of a C-terminal iron­sulfur binding domain and an N-terminal domain with homology to Nil-domain proteins, connected by a structurally rigid 4-amino acid linker. Notably, in contrast to canonical [2Fe2S] ferredoxins exemplified by PetF (ssl0020), which feature highly acidic surfaces facilitating electron transfer with photosystem I reaction centers, models of Ferredoxin 9 reveal a more neutral to basic protein surface. Using a combination of electron paramagnetic resonance spectroscopy and square-wave voltammetry on heterologously produced Ferredoxin 9, this study demonstrates that the protein coordinates 2×[4Fe4S]2+/1+ redox-active and magnetically interacting clusters, with measured redox potentials of -420 ± 9 mV and - 516 ± 10 mV vs SHE. A more in-depth analysis of Fdx9's unique structure and protein sequence suggests that this type of Nil-2[4Fe4S] multi-domain ferredoxin is well conserved in cyanobacteria, bearing structural similarities to proteins involved in homocysteine synthesis in methanogens.


Assuntos
Ferredoxinas , Synechocystis , Ferredoxinas/metabolismo , Transporte de Elétrons , Ferro/química , Enxofre/metabolismo
20.
Methods Enzymol ; 685: 531-550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245914

RESUMO

Electron-bifurcating flavoproteins catalyze the tightly coupled reduction of high- and low-potential acceptors using a median-potential electron donor, and are invariably complex systems with multiple redox-active centers in two or more subunits. Methods are described that permit, in favorable cases, the deconvolution of spectral changes associated with reduction of specific centers, making it possible to dissect the overall process of electron bifurcation into individual, discrete steps.


Assuntos
Elétrons , Flavoproteínas , Oxirredução , Catálise , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA