RESUMO
Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, affect billions of people and are responsible for almost 500,000 deaths/year. In particular, leishmaniasis, a neglected tropical disease, is considered a global public health problem because current drugs have several drawbacks including to toxicity, high cost, and drug resistance, which result in a lack of effective and readily available therapies. Therefore, the synthesis of new, safe, and effective molecules still requires the attention of the scientific community. Moreover, it is well known that chirality plays a crucial role in the antiparasitic activity of molecules, driving the design of their synthesis. Therefore, in this review we report a recent update on new chiral compounds with promising antileishmanial activity, focusing on synthetic approaches. Where reported, in most cases the enantiopure compound has shown better potency against the protozoa than its enantiomer or corresponding racemic mixture.
Assuntos
Antiprotozoários , Leishmaniose , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Humanos , Leishmaniose/tratamento farmacológico , EstereoisomerismoRESUMO
The potential antifungal activity of the marine alkaloid 2,2-bis(6-bromo-3-indolyl)ethylamine (URB 1204) was firstly assessed by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against different fungi. Then, URB 1204 was applied to a building material experimentally contaminated with selected fungi, in single and mixed species, for determining its potential application in preventing fungal growth. In addition, the over-time protection efficacy of URB 1204 was verified, subjecting the treated building surfaces to natural fungal contamination for 6 weeks. URB 1204 showed different antifungal activity, with the lowest MIC value (16 µg/mL) observed against Aspergillus flavus IDRA01, Cladosporium cladosporioides ATCC 16022 and Mucor circinelloides EHS03, and the highest MIC (128 µg/mL) against the dermatophytes strains. The growth Alternaria alternata BC01, Penicillium citrinum LS1, and C. cladosporioides ATCC 16022 on building material treated with URB 1204 water solution (64 µg/mL) was remarkably reduced with an effect time-dependent and related to the examined fungi. In terms of over-time efficacy, the samples treated with URB 1204 showed a delay of fungal growth comparable with that of a commercial antifungal product. These findings evidenced not only the ability of 2,2-bis(6-bromo-3-indolyl)ethylamine to limit the growth of different fungal species on building material but also to provide long-term protection against mold growth and proliferation, opening new perspectives for URB 1204 as preventive agent.
Assuntos
Alcaloides/farmacologia , Materiais de Construção/microbiologia , Etilaminas/farmacologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Indóis/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimentoRESUMO
The reaction of 3-substituted indoles with dehydroalanine (Dha) derivatives under Lewis acid-mediated conditions has been investigated. The formation of 2-substituted tryptophans is proposed to occur through a selective alkylative dearomatization-cyclization followed by C3- to C2-alkyl migration and rearomatization.
RESUMO
A chemoselective one-pot synthesis of pharmaceutically prospective indole-pyrrole hybrids by the formal [3 + 2] cycloaddition of 3-cyanoacetyl indoles (CAIs) with 1,2-diaza-1,3-dienes (DDs) has been developed. The new indole-pyrrole hybrids were phenotypically screened for efficacy against Leishmania infantum promastigotes. The most active compounds 3c, 3d, and 3j showed IC50 < 20 µM and moderate cytotoxicity, lower than miltefosine. Compound 3d was the most active with IC50 = 9.6 µM and a selectivity index of 5. Consequently, 3d could be a new lead compound for the generation of a new class of antileishmanial hybrids.
RESUMO
Herein we report the design and the synthesis of a library of new and more hydrophilic bisindole analogues based on our previously identified antileishmanial compound URB1483 that failed the preliminary in vivo test. The novel bisindoles were phenotypically screened for efficacy against Leishmania infantum promastigotes and simultaneously for toxicity on human macrophage-like THP-1 cells. Among the less toxic compounds, eight bisindoles showed IC50 below 10 µM. The most selective compound 1h (selectivity index = 10.1, comparable to miltefosine) and the most potent compound 2c (IC50 = 2.7 µM) were tested for their efficacy on L. infantum intracellular amastigotes. The compounds also demonstrated their efficacy in the in vitro infection model, showing IC50 of 11.1 and 6.8 µM for 1h and 2c, respectively. Moreover, 1h showed a better toxicity profile than the commercial drug miltefosine. For all these reasons, 1h could be a possible new starting point for hydrophilic antileishmanial agents with low cytotoxicity on human macrophage-like cells.
Assuntos
Antiprotozoários , Leishmania infantum , Leishmania infantum/efeitos dos fármacos , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Células THP-1 , Indóis/farmacologia , Indóis/química , Interações Hidrofóbicas e Hidrofílicas , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/química , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Concentração Inibidora 50RESUMO
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
RESUMO
A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.
RESUMO
Lyotropic Liquid Crystalline (LLC) nanoparticles represent an emerging class of smart, biocompatible, and biodegradable systems for the delivery of drugs. Among these, structures with complex 3D architectures such as cubosomes are of particular interest. These are non- lamellar assemblies having hydrophobic and hydrophilic portions able to carry drugs of different nature. They can further be modulated including suitable additives to control the release of the active payload, and to promote an active targeting. Starting from monoolein (GMO) cubic phase, different concentrations of mannose-based esters were added, and the eventual structural modifications were monitored to ascertain the effects of the presence of glycolipids. Moreover, the structural properties of these nanosystems loaded with Dexamethasone (DEX), a very well-known anti-inflammatory steroid, were also studied. Experiments were carried out by synchrotron Small Angle X-ray Scattering (SAXS), Raman Microspectroscopy (RMS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) measurements. The drug delivery potential (i.e. entrapment efficiency and release properties) of the obtained nanoparticles was evaluated. Finally, in vitro cytocompatibility and anti-inflammatory activity studies of the prepared formulations were carried out. Inclusion of mannose-based surfactants up to 10 mol% influenced the structural parameters of Im3m cubic phase and swollen cubic phases were obtained with the different glycolipids with lattice parameters significantly higher than GMO. A complete cytocompatibility and an increased DEX activity were observed, thus suggesting the possibility to use GMO/glycolipids nanoparticles to formulate innovative drug delivery systems.
Assuntos
Cristais Líquidos , Manose , Espalhamento a Baixo Ângulo , Difração de Raios X , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/farmacologia , Glicolipídeos , Cristais Líquidos/químicaRESUMO
The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure-property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications.
RESUMO
Indole-3-carbinol (I3C) is a natural product contained in vegetables belonging to the Brassicaceae family and has been studied in recent decades for its biological and pharmacological properties. Herein, we will analyze: (1) the biosynthetic processes and synthetic procedures through which I3C and its main derivatives have been obtained; (2) the characteristics that lead to believe that both I3C and its derivatives are responsible for several important activities-in particular, antitumor and antiviral, through insights concerning in vitro assays and in vivo tests; (3) the mechanisms of action of the most important compounds considered; (4) the potential social impact that the enhancement of the discussed molecules can have in the prevention and treatment of the pathologies' examined field-first of all, those related to respiratory tract disorders and cancer.
RESUMO
An efficient and practical approach for the synthesis of all four stereoisomers of the MT(2) melatonin receptor ligand 4-phenyl-2-propionamidotetralin (4-P-PDOT), each in enantiomerically pure form (ee > 99.9%), was developed. The strategy involved an optical resolution procedure of the key precursor (±)-4-phenyl-2-tetralone with the unusual resolving agent (S)-mandelamide, through the formation of four dihydronaphtalene-spiro-oxazolidin-4-one diastereomers. Interestingly, NMR experimental observations in combination with geometric calculations, provided unambiguous configuration assignments of all stereocenters of the key spiro stereoisomers. Cleavage of each single spiro diastereomer under acidic conditions gave enantiopure (R)- or (S)-4-phenyl-2-tetralone, which were then converted to each 4-P-PDOT single enantiomer by using stereoselective reactions.
Assuntos
Tetra-Hidronaftalenos/síntese química , Tetralonas/química , Ligantes , Conformação Molecular , Fenômenos Ópticos , Receptores de Melatonina/química , Estereoisomerismo , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologiaRESUMO
As a follow-up to our previous studies on glycolipid surfactants, a new molecule, that is lactose 6'-O-undecylenate (URB1418), was investigated. To this end, a practical synthesis and studies aimed at exploring its specific properties were carried out. URB1418 showed antifungal activities against Trichophyton rubrum F2 and Candida albicans ATCC 10231 (MIC 512 µg/mL) and no significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. At the same time, it presented anti-inflammatory properties, as documented by the dose-dependent reduction in LPS-induced NO release in RAW 264.7 cells, while a low antioxidant capacity in the range of concentrations tested (EC50 > 200 µM) was also observed. Moreover, URB1418 offers the advantage of being more stable than the reference polyunsaturated lactose esters and of being synthesized using a "green" procedure, involving an enzymatic method, high yield and low manufacturing cost. For all these reasons and the absence of toxicity (HaCaT cells), the new glycolipid presented herein could be considered an interesting compound for applications in various fields.
RESUMO
2,2-bis(6-bromo-1H-indol-3-yl) ethanamine, a marine bisindole alkaloid, showed anticancer property in several tumor cell lines thanks to the presence of a 3,3'-diindolylmethane scaffold. Here, the modifications in its chemical structure into alkaloid-like derivatives, have been evaluated, to investigate changes in its biological activities. Three derivatives have been considered and their potential apoptotic action has been evaluated through morpho-functional analyses in a human cancer cell line. Apoptosis appears strongly decreased in the derivatives without the bromine atoms (1) and in those where the bromine atoms have been substituted with fluorine atoms (2). On the contrary, the methylation of indole NH (3) does not alter the alkaloid apoptotic activity that occurs through mitochondria involvement supported by cardiolipin peroxidation and dysfunctional mitochondria presence. This manuscript highlights the alkaloid derivative cytotoxic effect, which is strictly correlated to the presence of N-methylated bisindole alkaloid and bromine atoms, conditions which assure to maintain the pro-apoptotic activity. Since molecular therapies, by targeting mitochondria pathways, have shown positive outcomes against several cancer cells, the alkaloid with bisindole methylated scaffold and the two bromine atoms can be considered a promising candidate to develop new derivatives with strong anticancer property. RESEARCH HIGHLIGHTS: 2,2-bis(6-bromo-1H-indol-3-yl) ethanamine is an alkaloid known for its anticancer properties. Morpho-functional analyses evaluated cytotoxicity of its synthetic derivatives in tumor cells. Anticancer properties depend on the presence of bisindole scaffold and the two bromine units.
Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Bromo/farmacologia , Linhagem Celular Tumoral , HumanosRESUMO
In recent years, researchers are exploring innovative green materials fabricated from renewable natural substances to meet formulation needs. Among them, biopolymers like chitosans and biosurfactants such as sugar fatty acid esters are of potential interest due to their biocompatibility, biodegradability, functionality, and cost-effectiveness. Both classes of biocompounds possess the ability to be efficiently employed in wound dressing to help physiological wound healing, which is a bioprocess involving uncontrolled oxidative damage and inflammation, with an associated high risk of infection. In this work, we synthesized two different sugar esters (i.e., lactose linoleate and lactose linolenate) that, in combination with chitosan and sucrose laurate, were evaluated in vitro for their cytocompatibility, anti-inflammatory, antioxidant, and antibacterial activities and in vivo as wound care agents. Emphasis on Wnt/ß-catenin associated machineries was also set. The newly designed lactose esters, sucrose ester, and chitosan possessed sole biological attributes, entailing considerable blending for convenient formulation of wound care products. In particular, the mixture composed of sucrose laurate (200 µM), lactose linoleate (100 µM), and chitosan (1%) assured its superiority in terms of efficient wound healing prospects in vivo together with the restoring of the Wnt/ß-catenin signaling pathway, compared with the marketed wound healing product (Healosol®), and single components as well. This innovative combination of biomaterials applied as wound dressing could effectively break new ground in skin wound care.
Assuntos
Quitosana , Antibacterianos , Bandagens , Ésteres , Açúcares , CicatrizaçãoRESUMO
In crystal structures of melatonin MT1 and MT2 receptors, a lipophilic subpocket has been characterized which accommodates the phenyl ring of the potent agonist 2-phenylmelatonin. This subpocket appears a key structural element to achieve high binding affinity and selectivity for the MT2 receptor. A series of 2-arylindole ligands was synthesized to probe the requirements for the optimal occupation and interaction with the 2-phenyl binding pocket. Thermodynamic integration simulations applied to MT1 and MT2 receptors in complex with the α-naphthyl derivative provided a rationale for the MT2-selectivity and investigation on the binding mode of a couple of atropisomers allowed to define the available space and arrangement of substituents inside the subpocket. Interestingly, more hydrophilic 2-aza-substituted compounds displayed high binding affinity and molecular dynamics simulations highlighted polar interaction with residues from the subpocket that could be responsible for their potency.
Assuntos
Melatonina , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulação de Dinâmica Molecular , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT2 de Melatonina/metabolismoRESUMO
INTRODUCTION: Indole-3-carbinol (I3C), an autolysis product of glucosinolates present in cruciferous vegetables, and its dimeric derivative (3,3'-DIM) have been indicated as promising agents in preventing the development and progression of breast cancer. We have recently shown that I3C cyclic tetrameric derivative CTet formulated in γ-cyclodextrin (γ-CD) efficiently inhibited cellular proliferation in breast cancer cell lines. This study aims to analyze the mechanisms involved in the in vitro inhibition of cell proliferation and to evaluate the in vivo antitumor activity of CTet in a xenograft study. METHODS: Estrogen receptor-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines were exposed to CTet to evaluate cell cycle perturbation (propidium iodide staining and cytofluorimetric acquisition), induction of autophagic morphological features (co-localization of LC3b autophagosome marker and LAMP2a lysosome marker by immunofluorescence) and changes in protein expression (immunoblot and microarray-based gene expression analyses). To test the in vivo efficacy of CTet, female athymic nude mice inoculated with MCF-7 cells were i.p. treated with 5 mg/kg/day of CTet for five days/week for two weeks and the tumor mass was externally monitored. RESULTS: CTet induced accumulation in G2/M phase without evidence of apoptotic response induction in both cell lines tested. In triple-negative MDA-MB-231 the autophagic lysosomal activity was significantly up-regulated after exposure to 4 µM of CTet for 8 hours, while the highest CTet concentration was necessary to observe autophagic features in MCF-7 cells. The inhibition of Akt activity and p53-independent p21/CDKN1A and GADD45A overexpression were identified as the main molecular events responsible for CTet activity in MCF-7 and p53-mutant MDA-MB-231 cells. In vivo, CTet administration was able to significantly inhibit the growth of MCF-7 xenotransplanted into nude mice, without adverse effect on body weight or on haematological parameters. CONCLUSIONS: Our data support CTet formulated with γ-CD as a promising and injectable anticancer agent for both hormone-responsive and triple-negative breast tumors.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Indóis/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes p53 , Humanos , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , gama-CiclodextrinasRESUMO
We report the synthesis, binding properties and intrinsic activity at MT(1) and MT(2) melatonin receptors of new dimeric melatonin receptor ligands in which two units of the monomeric agonist N-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide (1) are linked together through different anchor points. Dimerization of compound 1 through the methoxy substituent leads to a substantial improvement in selectivity for the MT(1) receptor, and to a partial agonist behavior. Compound 3a, with a trimethylene linker, was the most selective for the MT(1) subtype (112-fold selectivity) and compound 3d, characterized by a hexamethylene spacer, had the highest MT(1) binding affinity (pK(iMT1)=8.47) and 54-fold MT(1)-selectivity. Dimerization through the aniline nitrogen of 1 abolished MT(1) selectivity, leading to compounds with either a full agonist or an antagonist behavior depending on the nature of the linker.
Assuntos
Terapia de Alvo Molecular , Receptores de Melatonina/química , Células 3T3 , Animais , Dimerização , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Camundongos , Ligação Proteica , Ratos , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidoresRESUMO
Glycolipid surfactants are biocompatible and biodegradable compounds characterized by potential applications in various sectors including pharmaceuticals, cosmetics, agriculture, and food production. A specific overview regarding synthetic methodologies and properties of 6'-lactose-based surfactants is presented herein, particularly all the synthetic approaches to this class of lactose esters, such as enzymatic and traditional organic syntheses. Moreover, detailed descriptions of physicochemical data and biocompatibility properties of these molecules, that is, surface tension, critical micelle concentration, emulsifying ability, foaming, particle size distribution, biocompatibility, and safety, are described. Biological applications with a focus on permeability enhancing, antimicrobial activity, and antibiofilm properties of 6'-lactose-based esters are also reported.
RESUMO
Laurate (C12)-sucrose esters are established intestinal epithelial permeation enhancers (PEs) with potential for use in oral delivery. Most studies have examined blends of ester rather than specific monoesters, with little variation on the sugar moiety. To investigate the influence of varying the sugar moiety on monoester performance, we compared three monoesters: C12-sucrose, C12-lactose, and C12-trehalose. The assays were: critical micellar concentration (CMC) in Krebs-Henseleit buffer, MTS and lactate dehydrogenase assays in Caco-2 cells, transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [14C] mannitol across isolated rat intestinal mucosae, and tissue histology. For CMC, the rank order was C12-trehalose (0.21 mM) < C12-sucrose (0.34 mM) < C12-lactose (0.43 mM). Exposure to Caco-2 cells for 120 min produced TC50 values in the MTS assay from 0.1 to 0.4 mM. Each ester produced a concentration-dependent decrease in TEER across rat mucosae with 80% reduction seen with 8 mM in 5 min, but C12-trehalose was less potent. C12-sucrose and C12-lactose increased the Papp of [14C] mannitol across mucosae with similar potency and efficacy, whereas C12-trehalose was not as potent or efficacious, even though it still increased flux. In the presence of the three esters, gross intestinal histology was unaffected except at 8 mM for C12-sucrose and C12-lactose. In conclusion, the three esters enhanced permeability likely via tight junction modulation in rat intestinal tissue. C12-trehalose was not quite as efficacious, but neither did it damage tissue to the same extent. All three can be considered as potential PEs to be included in oral formulations.
Assuntos
Absorção Intestinal , Lauratos , Animais , Células CACO-2 , Dissacarídeos , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade , Ratos , Ratos WistarRESUMO
In this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the targeted analysis of 98 New Psychoactive Substances (NPS) from the hair matrix. The monitored compounds included various chemical classes (7 phenethylamines, 10 tryptamines, 18 cathinones, 24 synthetic opioids, and 38 synthetic cannabinoids) with emphasis given to newly emerged NPS. The method employed a direct extraction process through the incubation of hair samples (25 mg) and internal standards with M3® reagent at 100 °C for 60 min, followed by extract purification through acid and basic liquid-liquid micro-extraction (LLME). Extracted compounds were analyzed through LC-MS/MS system operating in multiple reaction monitoring mode. NPS were separated in 9.5 min with a Poroshell 120 EC-C18 column (2.7 µm, 4.6 × 50 mm) using a gradient eluting mobile phase composed of water and acetonitrile/water (95:5) both containing 0.1 % of formic acid. The developed and validated method shows a good precision (≤ 15 %), linearity (R2 between 0.993 and 0.999), selectivity, and sensitivity (LOD: 0.6-10.3 pg mg-1 and LOQ: 2.1-34.4 pg mg-1). The method showed also reduced matrix effect and acceptable recovery for most of the targeted compounds. Our results showed that this method is suitable for quantifying NPS in hair matrix and could be employed in the context of routine analyses in analytical laboratories.