Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(10): 4810-4818, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36867673

RESUMO

In this study, we propose the use of nondestructive, depth-resolved, element-specific characterization using grazing exit X-ray absorption near-edge structure spectroscopy (GE-XANES) to investigate the corrosion process in compositionally complex alloys (CCAs). By combining grazing exit X-ray fluorescence spectroscopy (GE-XRF) geometry and a pnCCD detector, we provide a scanning-free, nondestructive, depth-resolved analysis in a sub-micrometer depth range, which is especially relevant for layered materials, such as corroded CCAs. Our setup allows for spatial and energy-resolved measurements and directly extracts the desired fluorescence line, free from scattering events and other overlapping lines. We demonstrate the potential of our approach on a compositionally complex CrCoNi alloy and a layered reference sample with known composition and specific layer thickness. Our findings indicate that this new GE-XANES approach has exciting opportunities for studying surface catalysis and corrosion processes in real-world materials.

2.
J Chem Phys ; 158(13): 134707, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031154

RESUMO

Room temperature ionic liquids (RT-ILs) are promising electrolytes for electrocatalysis. Understanding the effects of the electrode-electrolyte interface structure on electrocatalysis in RT-ILs is important. Ultrafast mass transport of redox species in N-methyl-N-ethyl-pyrrolidinium polybromide (MEPBr2n+1) enabled evaluation of the reorganization energy (λ), which reflects the solvation structure in the inner Helmholtz plane (IHP). λ was achieved by fitting the electron transfer rate-limited voltammogram at a Pt ultramicroelectrode (UME) to the Marcus-Hush-Chidsey model for heterogeneous electron transfer kinetics. However, it is time-consuming or even impossible to prepare electrode materials, including alloys of numerous compositions in the form of UME, for each experiment. Herein, we report a method to evaluate the λ of MEPBr2n+1 by scanning electrochemical cell microscopy (SECCM), which allows high throughput electrochemical measurements using a single electrode with high spatial resolution. Fast mass transport in the nanosized SECCM tip is critical for achieving heterogeneous electron transfer-limited voltammograms. Furthermore, investigating λ on a high-entropy alloy materials library composed of Pt, Pd, Ru, Ir, and Ag suggests a negative correlation between λ and the work function. Given that the potential of zero charge correlates with the work function of electrodes, this can be attributed to the surface-charge sensitive ionic structure in the IHP of MEPBr2n+1, modulating the solvation energy of the redox-active species in the IHP.

3.
Angew Chem Int Ed Engl ; 62(39): e202307187, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37534574

RESUMO

Compositionally complex materials such as high-entropy alloys and oxides have the potential to be efficient platforms for catalyst discovery because of the vast chemical space spanned by these novel materials. Identifying the composition of the most active catalyst materials, however, requires unraveling the descriptor-activity relationship, as experimentally screening the multitude of possible element ratios quickly becomes a daunting task. In this work, we show that inferred adsorption energy distributions of *OH and *O on complex solid solution surfaces within the space spanned by the system Ag-Pd-Pt-Ru are coupled to the experimentally observed electrocatalytic performance for the oxygen reduction reaction. In total, the catalytic activity of 1582 alloy compositions is predicted with a cross-validated mean absolute error of 0.042 mA/cm2 by applying a theory-derived model with only two adjustable parameters. Trends in the discrepancies between predicted electrochemical performance values of the model and the measured values on thin film surfaces subsequently provide insight into the alloys' surface compositions during reaction conditions. Bridging this gap between computationally modeled and experimentally observed catalytic activities, not only reveals insight into the underlying theory of catalysis but also takes a step closer to realizing exploration and exploitation of high-entropy materials.

4.
Angew Chem Int Ed Engl ; 62(39): e202310069, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37537136

RESUMO

The vast possibilities in the elemental combinations of high-entropy alloys (HEAs) make it essential to discover activity descriptors for establishing rational electrocatalyst design principles. Despite the increasing attention on the potential of zero charge (PZC) of hydrogen evolution reaction (HER) electrocatalyst, neither the PZC of HEAs nor the impact of the PZC on the HER activity at HEAs has been described. Here, we use scanning electrochemical cell microscopy (SECCM) to determine the PZC and the HER activities of various elemental compositions of a Pt-Pd-Ru-Ir-Ag thin-film HEA materials library (HEA-ML) with high statistical reliability. Interestingly, the PZC of Pt-Pd-Ru-Ir-Ag is linearly correlated with its composition-weighted average work function. The HER current density in acidic media positively correlates with the PZC, which can be explained by the preconcentration of H+ in the electrical double layer at potentials negative of the PZC.

5.
J Infect Dis ; 224(3): 420-424, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33993274

RESUMO

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern with increased transmission dynamics has raised questions regarding stability and disinfection of these viruses. We analyzed surface stability and disinfection of the currently circulating SARS-CoV-2 variants B.1.1.7 and B.1.351 compared to wild type. Treatment with heat, soap, and ethanol revealed similar inactivation profiles indicative of a comparable susceptibility towards disinfection. Furthermore, we observed comparable surface stability on steel, silver, copper, and face masks. Overall, our data support the application of currently recommended hygiene measures to minimize the risk of B.1.1.7 and B.1.351 transmission.


Assuntos
Desinfecção , SARS-CoV-2/fisiologia , COVID-19/virologia , Desinfetantes/farmacologia , Temperatura Alta , Humanos , SARS-CoV-2/efeitos dos fármacos , Sabões/farmacologia
6.
Angew Chem Int Ed Engl ; 60(52): 26894-26903, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436810

RESUMO

The formation of a vast number of different multielement active sites in compositionally complex solid solution materials, often more generally termed high-entropy alloys, offers new and unique concepts in catalyst design, which mitigate existing limitations and change the view on structure-activity relations. We discuss these concepts by summarising the currently existing fundamental knowledge and critically assess the chances and limitations of this material class, also highlighting design strategies. A roadmap is proposed, illustrating which of the characteristic concepts could be exploited using which strategy, and which breakthroughs might be possible to guide future research in this highly promising material class for (electro)catalysis.

7.
Angew Chem Int Ed Engl ; 60(45): 24144-24152, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34506069

RESUMO

Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag-Pd, Ir-Pt, and Pd-Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.

8.
Angew Chem Int Ed Engl ; 60(13): 6932-6937, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33372334

RESUMO

Complex solid solutions ("high entropy alloys"), comprising five or more principal elements, promise a paradigm change in electrocatalysis due to the availability of millions of different active sites with unique arrangements of multiple elements directly neighbouring a binding site. Thus, strong electronic and geometric effects are induced, which are known as effective tools to tune activity. With the example of the oxygen reduction reaction, we show that by utilising a data-driven discovery cycle, the multidimensionality challenge raised by this catalyst class can be mastered. Iteratively refined computational models predict activity trends around which continuous composition-spread thin-film libraries are synthesised. High-throughput characterisation datasets are then used as input for refinement of the model. The refined model correctly predicts activity maxima of the exemplary model system Ag-Ir-Pd-Pt-Ru. The method can identify optimal complex-solid-solution materials for electrocatalytic reactions in an unprecedented manner.

9.
J Chem Phys ; 153(1): 014707, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640827

RESUMO

Thin-film material libraries in the ternary and quaternary metal oxide systems Fe-V-O, Cu-V-O, and Cu-Fe-V-O were synthesized using combinatorial reactive co-sputtering with subsequent annealing in air. Their compositional, structural, and functional properties were assessed using high-throughput characterization methods. Prior to the investigation of the quaternary system Cu-Fe-V-O, the compositions (Fe61V39)Ox and (Cu52V48)Ox with promising photoactivity were identified from their ternary subsystems Fe-V-O and Cu-V-O, respectively. Two Cu-Fe-V-O material libraries with (Cu29-72Fe4-27V22-57)Ox and (Cu11-55Fe27-73V12-34)Ox composition spread were investigated. Seven mixed ternary and quaternary phase regions were identified: I (α-Cu3FeV6O26/FeVO4), II (Cu5V2O10/FeVO4/α-Cu3Fe4V6O26), III (Cu5V2O10), IV (Cu5V2O10/FeVO4, V (FeVO4/γ-Cu2V2O7/α-Cu3Fe4V6O26), VI (ß-Cu2V2O7/α-Cu3Fe4V6O26/FeVO4), and VII (ß-Cu3Fe4V6O26/FeVO4). In the investigated composition range, two photoactive regions, (Cu53Fe7V40)Ox and (Cu45Fe21V34)Ox, were identified, exhibiting 103 µA/cm2 and 108 µA/cm2 photocurrent density for the oxygen evolution reaction at 1.63 V vs reversible hydrogen electrode, respectively. The highest photoactive region (Cu45Fe21V34)Ox comprises the dominant α-Cu3Fe4V6O24 phase and minor FeVO4 phase. This photoactive region corresponds to having an indirect bandgap of 1.87 eV and a direct bandgap of 2.58 eV with an incident photon-to-current efficiency of 30% at a wavelength of 310 nm.

10.
Nanomedicine ; 24: 102126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734515

RESUMO

The development of antibacterial implant surfaces is a challenging task in biomaterial research. We fabricated a highly antibacterial bimetallic platinum (Pt)/silver(Ag) nanopatch surface by short time sputtering of Pt and Ag on titanium. The sputter process led to a patch-like distribution with crystalline areas in the nanometer-size range (1.3-3.9 nm thickness, 3-60 nm extension). Structural analyses of Pt/Ag samples showed Ag- and Pt-rich areas containing nanoparticle-like Pt deposits of 1-2 nm. The adhesion and proliferation properties of S. aureus on the nanopatch samples were analyzed. Consecutively sputtered Ag/Pt nanopatches (Pt followed by Ag) induced enhanced antimicrobial activity compared to co-sputtered Pt/Ag samples or pure Ag patches of similar Ag amounts. The underlying sacrificial anode mechanism was proved by linear sweep voltammetry. The advantages of this nanopatch coating are the enhanced antimicrobial activity despite a reduced total amount of Ag/Pt and a self-limited effect due the rapid Ag dissolution.


Assuntos
Antibacterianos , Membranas Artificiais , Nanoestruturas/química , Platina , Prata , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Eletrodos , Platina/química , Platina/farmacologia , Prata/química , Prata/farmacologia
11.
Angew Chem Int Ed Engl ; 59(14): 5844-5850, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31867829

RESUMO

Complex solid-solution electrocatalysts (also referred to as high-entropy alloy) are gaining increasing interest owing to their promising properties which were only recently discovered. With the capability of forming complex single-phase solid solutions from five or more constituents, they offer unique capabilities of fine-tuning adsorption energies. However, the elemental complexity within the crystal structure and its effect on electrocatalytic properties is poorly understood. We discuss how addition or replacement of elements affect the adsorption energy distribution pattern and how this impacts the shape and activity of catalytic response curves. We highlight the implications of these conceptual findings on improved screening of new catalyst configurations and illustrate this strategy based on the discovery and experimental evaluation of several highly active complex solid solution nanoparticle catalysts for the oxygen reduction reaction in alkaline media.

12.
Nanotechnology ; 30(30): 305101, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30959494

RESUMO

Bimetallic alloyed silver-platinum nanoparticles (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10 in steps of 20 mol% were synthesized. The biological effects of AgPt NP, including cellular uptake, cell viability, osteogenic differentiation and osteoclastogenesis as well as the antimicrobial activity towards Staphylococcus aureus and Escherichia coli were analyzed in comparison to pure Ag NP and pure Pt NP. The uptake of NP into human mesenchymal stem cells was confirmed by cross-sectional focused-ion beam preparation and observation by scanning and transmission electron microscopy in combination with energy-dispersive x-ray analysis. Lower cytotoxicity and antimicrobial activity were observed for AgPt NP compared to pure Ag NP. Thus, an enhanced Ag ion release due to a possible sacrificial anode effect was not achieved. Nevertheless, a Ag content of at least 50 mol% was sufficient to induce bactericidal effects against both Staphylococcus aureus and Escherichia coli. In addition, a Pt-related (≥50 mol% Pt) osteo-promotive activity on human mesenchymal stem cells was observed by enhanced cell calcification and alkaline phosphatase activity. In contrast, the osteoclastogenesis of rat primary precursor osteoclasts was inhibited. In summary, these results demonstrate a combinatory osteo-promotive and antimicrobial activity of bimetallic Ag50Pt50 NP.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas , Osteogênese/efeitos dos fármacos , Platina/farmacologia , Prata/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/química , Platina/química , Prata/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
13.
Nanotechnology ; 29(3): 035404, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29186000

RESUMO

The crystal orientation and morphology of sputtered LiMn2O4 thin films is strongly affected by the current collector. By substituting Pt with Au, it is possible to observe in the x-ray diffraction pattern of LiMn2O4 a change in the preferential orientation of the grains from (111) to (400). In addition, LiMn2O4 thin films deposited on Au show a higher porosity than films deposited on Pt. These structural differences cause an improvement in the electrochemical performances of the thin films deposited on Au, with up to 50% more specific charge. Aqueous cells using thin film based on LiMn2O4 sputtered on Au or Pt as the cathode electrode present a similar retention of specific charge, delivering 85% and 100%, respectively, of the initial values after 100 cycles. The critical role of the nature of the substrate used in the morphology and electrochemical behaviour observed could permit the exploration of similar effects for other lithium intercalation electrodes.

14.
Anal Chem ; 89(11): 5832-5839, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28486800

RESUMO

Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobic-hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets.

15.
Nanotechnology ; 28(18): 185604, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28398904

RESUMO

Porous and photoelectrochemically active Fe-doped WO3 nanostructures were obtained by a combinatorial dealloying method. Two types of precursor materials libraries, exhibiting dense and nano-columnar morphology were fabricated by using two distinct magnetron sputter deposition geometries. Both libraries were subjected to combinatorial dealloying enabling preparation and screening of a large quantity of compositions having different nanostructures. This approach allows identifying materials with interesting photoelectrochemical characteristics. The dealloying process selectively dissolved Fe from the composition gradient precursor W-Fe materials library, resulting in formation of monoclinic single crystalline nanoblade-like structures over the entire surface. Photoelectrochemical properties of nanostructured Fe:WO3 films were found to be composition-dependent. The measurement region doped with ∼1.7 at % Fe and a film thickness of ∼ 900-1100 nm displayed highly porous WO3 nanostructures and exhibited the highest photocurrent density of ∼ 72 µA cm-2. This enhanced photocurrent density is attributed to the decreased bandgap values, suppressed recombination of electron-hole pairs, improved light absorption as well as efficient charge transport in the highly porous Fe-doped film with single crystalline WO3 nanoblades.

16.
Sci Technol Adv Mater ; 18(1): 231-238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458744

RESUMO

Thin film libraries of Fe-Co-V were fabricated by combinatorial sputtering to study magnetic and structural properties over wide ranges of composition and thickness by high-throughput methods: synchrotron X-ray diffraction, magnetometry, composition, and thickness were measured across the Fe-Co-V libraries. In-plane magnetic hysteresis loops were shown to have a coercive field of 23.9 kA m-1 (300 G) and magnetization of 1000 kA m-1. The out-of-plane direction revealed enhanced coercive fields of 207 kA m-1 (2.6 kG) which was attributed to the shape anisotropy of column grains observed with electron microscopy. Angular dependence of the switching field showed that the magnetization reversal mechanism is governed by 180° domain wall pinning. In the thickness-dependent combinatorial study, co-sputtered composition spreads had a thickness ranging from 50 to 500 nm and (Fe70Co30)100-xVx compositions of x = 2-80. Comparison of high-throughput magneto-optical Kerr effect and traditional vibrating sample magnetometer measurements show agreement of trends in coercive fields across large composition and thickness regions.

17.
Nanotechnology ; 27(49): 495604, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834309

RESUMO

Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ∼150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the [Formula: see text] and [Formula: see text] planes of α″ martensite, indicating that the films' growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a combinatorial materials library fabrication strategy offer a promising technological approach for investigating Ti-Ta thin films for a range of applications. The proposed approaches can be similarly implemented for other materials systems which can benefit from the formation of a nanocolumnar morphology.

18.
Nanotechnology ; 25(20): 205606, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24786466

RESUMO

Glancing angle co-deposition of well-separated W-Fe nanocolumns was carried out using a W oblique angle sputter source and a Fe confocal incidence source. As-deposited nanocolumns with an overall composition of W64.6Fe35.4 (at.%) exhibited an average column width w nc of 77 ± 15 nm with predominant growth in the ß-W phase. With the aim of synthesizing highly porous nanostructures, the as-deposited precursor W-Fe nanocolumnar thin films were immersed in aqueous HNO3 solution for various dealloying durations (t d ). Formation of nanoflake-, nanocactus-, and nanoblade-like structures were observed during the dealloying treatment, as a result of selective dissolution of Fe from the W-Fe precursor films and simultaneous oxidation of W adatoms. By increasing the dealloying duration, the Fe concentration within the film reduced drastically and the film thickness increased by about three times in comparison to the as-deposited film. The dealloyed film exhibited an overall composition of W95.6Fe4.4, where the effective surface area of the film increased substantially. It was found that W adatom diffusion and subsequent rearrangement are crucially important in determining the resultant thin film morphology. The morphological development, corresponding compositions and crystallographic properties of different nanostructures were found to be significantly dependent on the dealloying duration. For optimized processing parameters, the selective dissolution process led to formation of single crystal monoclinic WO3 nanoblades, with growth along [002] and [020] axes.

19.
Nanotechnology ; 25(19): 195101, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24763247

RESUMO

The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs).Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.


Assuntos
Antibacterianos/farmacologia , Nanoestruturas , Titânio/farmacologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Hemípteros , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
20.
Sci Technol Adv Mater ; 15(1): 015006, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877648

RESUMO

A ternary thin film combinatorial materials library of the valve metal system Hf-Ta-Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott-Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA