Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38886164

RESUMO

Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Descoberta de Drogas/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
2.
Biochem Biophys Res Commun ; 736: 150496, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39128264

RESUMO

The pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment is distinguished by a high degree of fibrosis and inflammation, known as desmoplasia. Desmoplasia increases the stromal deposition and extracellular matrix (ECM) stiffness observed in the tumor microenvironment, contributing to the dampened penetration of pharmacological agents. The molecular and biophysical composition of the ECM during the earliest cellular changes in the development of PDAC, i.e. acinar ductal metaplasia (ADM), has not been extensively explored. We report that the mRNA expression of key protein components of the ECM increases during ADM in p48Cre/+;LSL-KrasG12D (KC) mouse acinar organoids cultured in Matrigel. Treatment of the organoids with small molecular weight epigenetic modulating compounds that inhibit or reverse ADM (largazole, FK228 and chaetocin) dramatically reduced the tissue mRNA expression of collagens, hyaluronan synthase, laminin and fibronectin. The storage moduli, determined by video tracking of fluorescent nanoparticles embedded into the Matrigel, increased during ADM and was reduced following treatment with the epigenetic modulating compounds. We report that the ECM of mouse organoids stiffens during ADM and is further enhanced by the presence of mutant Kras. Moreover, select HDAC and HMT inhibitors reduced the mRNA expression of ECM components and ECM stiffness during inhibition and reversal of ADM, suggesting that these compounds may be useful as adjuvants to enhance the tumor penetration of agents used to treat PDAC.

3.
Chemistry ; : e202401393, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023398

RESUMO

The macrocyclic tumonolide (1) with enamide functionality and the linear tumonolide aldehyde (2) are new interconverting natural products from a marine cyanobacterium with a peptide-polyketide skeleton, representing a hybrid of apratoxins and palmyrolides or laingolides. The planar structures were established by NMR and mass spectrometry. The relative configuration of the stereogenically-rich apratoxin-like polyketide portion was determined using J-based configuration analysis. The absolute configuration of tumonolide (1) was determined by chiral analysis of the amino acid units and computational methods, followed by NMR chemical shift and ECD spectrum prediction, indicating all-R configuration for the polyketide portion, as in palmyrolide A and contrary to the all-S configuration in apratoxins. Functional screening against a panel of 168 GPCR targets revealed tumonolide (1) as a selective antagonist of TACR2 with an IC50 of 7.0 µM, closely correlating with binding affinity. Molecular docking studies established the binding mode and rationalized the selectivity for TACR2 over TACR1 and TACR3. RNA sequencing upon treatment of HCT116 colorectal cancer cells demonstrated activation of the pulmonary fibrosis idiopathic signaling pathway and the insulin secretion signaling pathway at 20 µM, indicating its potential to modulate these pathways.

4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619102

RESUMO

Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/ß-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/ß-tubulin-GB1 complex.


Assuntos
Antineoplásicos/síntese química , Proteínas de Bactérias/síntese química , Produtos Biológicos/síntese química , Depsipeptídeos/síntese química , Microtúbulos/efeitos dos fármacos , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Colchicina/química , Colchicina/farmacologia , Cristalografia por Raios X , Cianobactérias/química , Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacologia , Descoberta de Drogas , Células HCT116 , Humanos , Maitansina/química , Maitansina/farmacologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pironas/química , Pironas/farmacologia , Taxoides/química , Taxoides/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/isolamento & purificação , Moduladores de Tubulina/farmacologia , Alcaloides de Vinca/química , Alcaloides de Vinca/farmacologia
5.
J Nat Prod ; 86(1): 85-93, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36546857

RESUMO

Lyngbyastatins (Lbns) 1 (1) and 3 (2) belong to a group of cyclic depsipeptides that inhibit cancer cell proliferation. These compounds have been isolated from different marine cyanobacterial collections, while further development of these compounds relies on their lengthy total synthesis. Biosynthetic studies of these compounds can provide viable strategies to access these compounds and develop new analogs. In this study, we report the identification and characterization of one Lbn biosynthetic gene cluster (BGC) from the marine cyanobacterium Okeania sp. VPG18-21. We initially identified 1 and 2 in the organic extract by mass spectrometry and performed the targeted isolation of these compounds, which feature a (2S,3R)-3-amino-2-methylpentanoic acid (MAP) and a (2S,3R)-3-amino-2-methylhexanoic acid (Amha) moiety, respectively. Parallel metagenomic sequencing of VPG18-21 led to the identification of a putative Lbn BGC that encodes six megaenzymes (LbnA-F), including one polyketide synthase (PKS, LbnE), four nonribosomal peptide synthetases (NRPSs, LbnB-D and -F), and one PKS-NRPS hybrid (LbnA). Bioinformatic analysis of these enzymes suggested that the BGC produces 1 and 2. Furthermore, our biochemical studies of three recombinant adenylation domains uncovered their substrate specificities, supporting the identity of the BGC. Finally, we identified near-complete Lbn-like BGCs in the genomes of two other marine cyanobacteria.


Assuntos
Antineoplásicos , Cianobactérias , Depsipeptídeos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Cianobactérias/química , Depsipeptídeos/química , Policetídeo Sintases/genética , Peptídeo Sintases/genética , Família Multigênica
6.
Mar Drugs ; 21(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37504909

RESUMO

Marine cyanobacteria are a rich source of bioactive natural products. Here, we report the isolation and structure elucidation of the previously reported iezoside (1) and its C-31 O-demethyl analogue, iezoside B (2), from a cyanobacterial assemblage collected at Loggerhead Key in the Dry Tortugas, Florida. The two compounds have a unique skeleton comprised of a peptide, a polyketide and a modified sugar unit. The compounds were tested for cytotoxicity and effects on intracellular calcium. Both compounds exhibited cytotoxic activity with an IC50 of 1.5 and 3.0 µΜ, respectively, against A549 lung carcinoma epithelial cells and 1.0 and 2.4 µΜ against HeLa cervical cancer cells, respectively. In the same cell lines, compounds 1 and 2 show an increase in cytosolic calcium with approximate EC50 values of 0.3 and 0.6 µΜ in A549 cells and 0.1 and 0.5 µΜ, respectively, in HeLa cells, near the IC50 for cell viability, suggesting that the increase in cytosolic calcium is functionally related to the cytotoxicity of the compounds and consistent with their activity as SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) inhibitors. The structure-activity relationship provides evidence that structural changes in the sugar unit may be tolerated, and the activity is tunable. This finding has implications for future analogue synthesis and target interaction studies.


Assuntos
Antineoplásicos , Cianobactérias , Humanos , Células HeLa , Cálcio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Cianobactérias/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Açúcares
7.
Mar Drugs ; 22(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248654

RESUMO

NMR and MS/MS-based metabolomics of a cyanobacterial extract from Piti Bomb Holes, Guam, indicated the presence of unique enyne-containing halogenated fatty acid amides. We isolated three new compounds of this class, taveuniamides L-N (1-3), along with the previously reported taveuniamide F (4), which was the most abundant analog. The planar structures of the new compounds were established using 1D and 2D NMR as well as mass spectrometry. We established the configuration of this chemical class to be R at C-8 via Mosher's analysis of 4 after reduction of the carboxamide group. Our biological investigations with 4 revealed that the compound binds to the cannabinoid receptor CNR1, acting as an antagonist/inverse agonist in the canonical G-protein signaling pathways. In selectivity profiling against 168 GPCR targets using the ß-arrestin functional assay, we found that 4 antagonizes GPR119, NPSR1b, CCR9, CHRM4, GPR120, HTR2A, and GPR103, in addition to CNR1. Interestingly, 4 showed a 6.8-fold selectivity for CNR1 over CNR2. The binding mode of 4 to CNR1 was investigated using docking and molecular dynamics simulations with both natural and unnatural stereoisomers, revealing important CNR1 residues for the interaction and also providing a possible reasoning for the observed CNR1/CNR2 selectivity.


Assuntos
Cianobactérias , Agonismo Inverso de Drogas , Espectrometria de Massas em Tandem , Amidas/farmacologia , Ácidos Graxos
8.
Mar Drugs ; 21(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999377

RESUMO

The monounsaturated fatty acid 7(E)-9-keto-hexadec-7-enoic acid (1) and three structurally related analogues with different oxidation states and degrees of unsaturation (2-4) were discovered from a marine benthic cyanobacterial mat collected from Delta Shoal, Florida Keys. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The structure of 1 contained an α,ß-unsaturated carbonyl system, a key motif required for the activation of the Keap1/Nrf2-ARE pathway that is involved in the activation of antioxidant and phase II detoxification enzymes. Compounds 1-4 were screened in ARE-luciferase reporter gene assay using stably transfected HEK293 cells, and only 1 significantly induced Nrf2 activity at 32 and 10 µM, whereas 2-4 were inactive. As there is crosstalk between inflammation and oxidative stress, subsequent biological studies were focused on 1 to investigate its anti-inflammatory potential. Compound 1 induced Nqo1, a well-known target gene of Nrf2, and suppressed iNos transcript levels, which translated into reduced levels of nitric oxide in LPS-activated mouse macrophage RAW264.7 cells, a more relevant model for inflammation. RNA sequencing was performed to capture the effects of 1 on a global level and identified additional canonical pathways and upstream regulators involved in inflammation and immune response, particularly those related to multiple sclerosis. A targeted survey of marine cyanobacterial samples from other geographic locations, including Guam, suggested the widespread occurrence of 1. Furthermore, the previous isolation of 1 from marine diatoms and green algae implied a potentially important ecological role across marine algal eukaryotes and prokaryotes. The previous isolation from sea lettuce raises the possibility of dietary intervention to attenuate inflammation and related disease progression.


Assuntos
Ácidos Graxos , Fator 2 Relacionado a NF-E2 , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Ácidos Graxos/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células HEK293 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia
9.
J Nat Prod ; 85(3): 581-589, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35167289

RESUMO

Our ongoing efforts to explore the chemical space associated with marine cyanobacteria from coral reefs of Guam have yielded two new members of the anaenamide family of natural products, anaenamides C (3) and D (4). These compounds were isolated from a novel Hormoscilla sp. (VPG16-58). Our phylogenetic profiling (16S rDNA) of this cyanobacterium indicated that VPG16-58 is taxonomically distinct from the previously reported producer of the anaephenes, VPG16-59 (Hormoscilla sp.), and other previously documented species of the genus Hormoscilla. The planar structures of 3 and 4 were determined via spectroscopic methods, and absolute configurations of the α-hydroxy acids were assigned by enantioselective HPLC analysis. To address the requirement for sufficient material for testing, we first adapted our published linear synthetic approach for 1 and 2 to generate anaenoic acid (7), which served as a point for diversification, providing the primary amides 3 and 4 from synthetic intermediates 5 and 6, respectively. The compounds were then tested for effects on HCT116 colon cancer cell viability and in an ARE-luciferase reporter gene assay for Nrf2 modulation using HEK293 human embryonic kidney cells. Our findings indicate that, in contrast to cytotoxic methyl esters 1 and 2, the primary amides 3 and 4 activate the Nrf2 pathway at noncytotoxic concentrations. Overall, our data suggest that the anaenamide scaffold is tunable to produce differential biological outcomes.


Assuntos
Cianobactérias , Fator 2 Relacionado a NF-E2 , Amidas/farmacologia , Cianobactérias/química , Células HEK293 , Humanos , Filogenia
10.
Molecules ; 27(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35268819

RESUMO

Dysidazirine carboxylic acid (1) was isolated from the lipophilic extract of a collection of the benthic marine cyanobacterium Caldora sp. from reefs near Fort Lauderdale, Florida. The planar structure of this new compound was determined by spectroscopic methods and comparisons between HRMS and NMR data with its reported methyl ester. The absolute configuration of the single chiral center was determined by the conversion of 1 to the methyl ester and the comparison of its specific rotation data with the two known methyl ester isomers, 2 and 3. Molecular sequencing with 16S rDNA indicated that this cyanobacterium differs from Caldora penicillata (Oscillatoriales) and represents a previously undocumented and novel Caldora species. Dysidazirine (2) showed weak cytotoxicity against HCT116 colorectal cancer cells (IC50 9.1 µM), while dysidazirine carboxylic acid (1) was non-cytotoxic. Similar cell viability patterns were observed in RAW264.7 cells with dysidazirine only (2), displaying cytotoxicity at the highest concentration tested (50 µM). The non-cytotoxic dysidazirine carboxylic acid (1) demonstrated anti-inflammatory activity in RAW264.7 cells stimulated with LPS. After 24 h, 1 inhibited the production of NO by almost 50% at 50 µM, without inducing cytotoxicity. Compound 1 rapidly decreased gene expression of the pro-inflammatory gene iNOS after 3 h post-LPS treatment and in a dose-dependent manner (IC50 ~1 µM); the downregulation of iNOS persisted at least until 12 h.


Assuntos
Azirinas , Ácidos Carboxílicos , Anti-Inflamatórios/farmacologia , Ácidos Carboxílicos/farmacologia , Florida , Humanos , Estrutura Molecular
11.
Chembiochem ; 22(10): 1790-1799, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33527693

RESUMO

Amantelide A, a polyhydroxylated macrolide isolated from a marine cyanobacterium, displays broad-spectrum activity against mammalian cells, bacterial pathogens, and marine fungi. We conducted comprehensive mechanistic studies to identify the molecular targets and pathways affected by amantelide A. Our investigations relied on chemical structure similarities with compounds of known mechanisms, yeast knockout mutants, yeast chemogenomic profiling, and direct biochemical and biophysical methods. We established that amantelide A exerts its antifungal action by binding to ergosterol-containing membranes followed by pore formation and cell death, a mechanism partially shared with polyene antifungals. Binding assays demonstrated that amantelide A also binds to membranes containing epicholesterol or mammalian cholesterol, thus suggesting that the cytotoxicity to mammalian cells might be due to its affinity to cholesterol-containing membranes. However, membrane interactions were not completely dependent on sterols. Yeast chemogenomic profiling suggested additional direct or indirect effects on actin. Accordingly, we performed actin polymerization assays, which suggested that amantelide A also promotes actin polymerization in cell-free systems. However, the C-33 acetoxy derivative amantelide B showed a similar effect on actin dynamics in vitro but no significant activity against yeast. Overall, these studies suggest that the membrane effects are the most functionally relevant for amantelide A mechanism of action.


Assuntos
Antifúngicos/metabolismo , Membrana Celular/metabolismo , Macrolídeos/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Membrana Celular/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Ergosterol/química , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Lipossomos/química , Lipossomos/metabolismo , Macrolídeos/química , Macrolídeos/farmacologia , Nistatina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Ovinos
12.
Chembiochem ; 22(2): 416-422, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816319

RESUMO

Some fungal epithiodiketopiperazine alkaloids display α,ß-polysulfide bridges alongside diverse structural variations. However, the logic of their chemical diversity has rarely been explored. Here, we report the identification of three new (2, 3, 8) and five known (1, 4-7) epithiodiketopiperazines of this subtype from a marine-derived Penicillium sp. The structure elucidation was supported by multiple spectroscopic analyses. Importantly, we observed multiple nonenzymatic interconversions of these analogues in aqueous solutions and organic solvents. Furthermore, the same biosynthetic origin of these compounds was supported by one mined gene cluster. The dominant analogue (1) demonstrated selective cytotoxicity to androgen-sensitive prostate cancer cells and HIF-depleted colorectal cells and mild antiaging activities, linking the bioactivity to oxidative stress. These results provide crucial insight into the formation of fungal epithiodiketopiperazines through chemical interconversions.


Assuntos
Dicetopiperazinas/química , Penicillium/química , Sulfetos/química , Estrutura Molecular
13.
Chemistry ; 27(17): 5564-5571, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33502811

RESUMO

Described herein is a function-oriented synthesis route and biological evaluation of pseudoguaianolide analogues. The 10-step synthetic route developed retains the topological complexity of the natural product, installs functional handles for late-stage diversification, and forges the key bioactive Michael acceptors early in the synthesis. The analogues were found to be low-micromolar Nrf2 activators and micromolar NF-κB inhibitors and dependent on the local environment of the Michael acceptor moieties.


Assuntos
Produtos Biológicos , Fator 2 Relacionado a NF-E2 , NF-kappa B
14.
J Nat Prod ; 84(3): 779-789, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33480689

RESUMO

New cyanobacteria-derived bifunctional analogues of doscadenamide A, a LasR-dependent quorum sensing (QS) activator in Pseudomonas aeruginosa, characterized by dual acylation of the pyrrolinone core structure and the pendant side chain primary amine to form an imide/amide hybrid are reported. The identities of doscadenamides B-J were confirmed through total synthesis and a strategic focused library with different acylation and unsaturation patterns was created. Key molecular interactions for binding with LasR and a functional response through mutation studies coupled with molecular docking were identified. The structure-activity relationships (SARs) were probed in various Gram-negative bacteria, including P. aeruginosa and Vibrio harveyi, indicating that the pyrrolinone-N acyl chain is critical for full agonist activity, while the other acyl chain is dispensable or can result in antagonist activity, depending on the bacterial system. Since homoserine lactone (HSL) quorum sensing activators have been shown to act in synergy with TRAIL to induce apoptosis in cancer cells, selected doscadenamides were tested in orthogonal eukaryotic screening systems. The most potent QS agonists, doscadenamides S10-S12, along with doscadenamides F and S4 with partial or complete saturation of the acyl side chains, exhibited the most pronounced synergistic effects with TRAIL in triple negative MDA-MB-231 breast cancer cells. The overall correlation of the SAR with respect to prokaryotic and eukaryotic targets may hint at coevolutionary processes and intriguing host-bacteria relationships. The doscadenamide scaffold represents a non-HSL template for combination therapy with TRAIL pathway stimulators.


Assuntos
Apoptose/efeitos dos fármacos , Cianobactérias/química , Pirróis/farmacologia , Percepção de Quorum/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirróis/química , Pirróis/isolamento & purificação , Relação Estrutura-Atividade , Vibrio/efeitos dos fármacos
15.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33928376

RESUMO

Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.


Assuntos
Cianobactérias/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Cianobactérias/química , Cianobactérias/genética , Engenharia Genética , Humanos , Família Multigênica
16.
Mar Drugs ; 19(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34436310

RESUMO

Ocular angiogenic diseases, characterized by abnormal blood vessel formation in the eye, are the leading cause of blindness. Although Anti-VEGF therapy is the first-line treatment in the market, a substantial number of patients are refractory to it or may develop resistance over time. As uncontrolled proliferation of vascular endothelial cells is one of the characteristic features of pathological neovascularization, we aimed to investigate the role of the class I histone deacetylase (HDAC) inhibitor Largazole, a cyclodepsipeptide from a marine cyanobacterium, in ocular angiogenesis. Our study showed that Largazole strongly inhibits retinal vascular endothelial cell viability, proliferation, and the ability to form tube-like structures. Largazole strongly inhibits the vessel outgrowth from choroidal explants in choroid sprouting assay while it does not affect the quiescent choroidal vasculature. Largazole also inhibits vessel outgrowth from metatarsal bones in metatarsal sprouting assay without affecting pericytes coverage. We further demonstrated a cooperative effect between Largazole and an approved anti-VEGF drug, Alflibercept. Mechanistically, Largazole strongly inhibits the expression of VEGFR2 and leads to an increased expression of cell cycle inhibitor, p21. Taken together, our study provides compelling evidence on the anti-angiogenic role of Largazole that exerts its function through mediating different signaling pathways.


Assuntos
Inibidores da Angiogênese/farmacologia , Cianobactérias , Depsipeptídeos/farmacologia , Oftalmopatias/prevenção & controle , Olho/irrigação sanguínea , Tiazóis/farmacologia , Animais , Organismos Aquáticos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/prevenção & controle , Fitoterapia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577088

RESUMO

We report the first isolation of the alkaloid aaptamine from the Philippine marine sponge Stylissa sp. Aaptamine possessed weak antiproliferative activity against HCT116 colon cancer cells and inhibited the proteasome in vitro at 50 µM. These activities may be functionally linked. Due to its known, more potent activity on certain G-protein coupled receptors (GPCRs), including α-adrenergic and δ-opioid receptors, the compound was profiled more broadly at sub-growth inhibitory concentrations against a panel of 168 GPCRs to potentially reveal additional targets and therapeutic opportunities. GPCRs represent the largest class of drug targets. The primary screen at 20 µM using the ß-arrestin functional assay identified the antagonist, agonist, and potentiators of agonist activity of aaptamine. Dose-response analysis validated the α-adrenoreceptor antagonist activity of aaptamine (ADRA2C, IC50 11.9 µM) and revealed the even more potent antagonism of the ß-adrenoreceptor (ADRB2, IC50 0.20 µM) and dopamine receptor D4 (DRD4, IC50 6.9 µM). Additionally, aaptamine showed agonist activity on selected chemokine receptors, by itself (CXCR7, EC50 6.2 µM; CCR1, EC50 11.8 µM) or as a potentiator of agonist activity (CXCR3, EC50 31.8 µM; CCR3, EC50 16.2 µM). These GPCRs play a critical role in the treatment of cardiovascular disease, diabetes, cancer, and neurological disorders. The results of this study may thus provide novel preventive and therapeutic strategies for noncommunicable diseases (NCDs).


Assuntos
Alcaloides/farmacologia , Naftiridinas/farmacologia , Doenças não Transmissíveis/tratamento farmacológico , Poríferos/química , Antagonistas Adrenérgicos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Humanos , Naftiridinas/química , Naftiridinas/isolamento & purificação , Filipinas , Receptores Adrenérgicos/efeitos dos fármacos , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/efeitos dos fármacos , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos
18.
Nat Prod Rep ; 37(5): 717-736, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067014

RESUMO

Covering: up to the end of 2019Diverse natural product small molecules have allowed critical insights into processes that govern eukaryotic cells' ability to secrete cytosolically synthesized secretory proteins into their surroundings or to insert newly synthesized integral membrane proteins into the lipid bilayer of the endoplasmic reticulum. In addition, many components of the endoplasmic reticulum, required for protein homeostasis or other processes such as lipid metabolism or maintenance of calcium homeostasis, are being investigated for their potential in modulating human disease conditions such as cancer, neurodegenerative conditions and diabetes. In this review, we cover recent findings up to the end of 2019 on natural products that influence protein secretion or impact ER protein homeostasis, and serve as powerful chemical tools to understand protein flux through the mammalian secretory pathway and as leads for the discovery of new therapeutics.


Assuntos
Produtos Biológicos/farmacologia , Células Eucarióticas/efeitos dos fármacos , Proteínas/metabolismo , Animais , Produtos Biológicos/química , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Células Eucarióticas/metabolismo , Humanos , Transporte Proteico/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/fisiologia
19.
Nat Prod Rep ; 37(6): 827-860, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519686

RESUMO

Covering: up to April 2020 Proteases are involved in the regulation of many physiological processes. Their overexpression and dysregulated activity are linked to diseases such as hypertension, diabetes, viral infections, blood clotting disorders, respiratory diseases, and cancer. Therefore, they represent an important class of therapeutic targets. Several protease inhibitors have reached the market and >60% of them are directly related to natural products, even when excluding synthetic natural product mimics. Historically, natural products have been a valuable and validated source of therapeutic agents, as over half of the marketed drugs across targets and diseases are inspired by natural product structures. In the past two decades the number of new protease inhibitors discovered from nature has sharply increased. Additionally, the availability of 3D structural information for proteases has permitted structure-based design and accelerated the synthesis of optimized lead structures with improved potency and selectivity profiles, resulting in some of the most-potent-in-class inhibitors. These discoveries were oftentimes maximized by in-depth biological assessments of lead inhibitors, linking them to a relevant disease state. This review will discuss some of the current and emerging drug targets and their involvement in various disease processes, highlighting selected success stories behind several FDA-approved protease inhibitors that have natural products scaffolds as well as recent selected pharmacologically well-characterized inhibitors derived from marine or terrestrial sources.


Assuntos
Produtos Biológicos/química , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular/métodos , Peptídeo Hidrolases/química , Inibidores de Proteases/uso terapêutico
20.
Chembiochem ; 21(16): 2356-2366, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32237262

RESUMO

Chemical investigation of a benthic marine cyanobacterium yielded the anticancer agent dolastatin 15, originally isolated from a mollusk. Dolastatin 15 is a microtubule-destabilizing agent with analogues undergoing clinical evaluation. Profiling against a panel of isogenic HCT116 colorectal cancer cells showed remarkable differential cytotoxicity against the parental cells over isogenic cells lacking HIF or other key players in the pathway, including oncogenic KRAS and VEGF. Dolastatin 15 displayed an antivascularization effect in human endothelial cells and in zebrafish vhl mutants with activated Hif, thus signifying its clinical potential as a treatment for solid tumors with an angiogenic component. Global transcriptome analysis with RNA sequencing suggested that dolastatin 15 could affect other major cancer pathways that might not directly involve tubulin or HIF. The identification of the true producer of a clinically relevant agent is important for sustainable supply, as is understanding the biosynthesis, and future genetic manipulation of the biosynthetic gene cluster for analogue production.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Cianobactérias/química , Depsipeptídeos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/tratamento farmacológico , Depsipeptídeos/uso terapêutico , Células HCT116 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA