Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(24)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35245911

RESUMO

Near-infrared detection is widely used for nondestructive and non-contact inspections in various areas, including thermography, environmental and chemical analysis as well as food and medical diagnoses. Common room temperature bolometer-type infrared sensors are based on architectures in theµm range, limiting miniaturization for future highly integrated 'More than Moore' concepts. In this work, we present a first principle study on a highly scalable and CMOS compatible bolometer-type detector utilizing Ge nanowires as the thermal sensitive element. For this approach, we implemented the Ge nanowires on top of a low thermal conducting and highly absorptive membrane as a near infrared (IR) sensor element. We adopted a freestanding membrane coated with an impedance matched platinum absorber demonstrating wavelength independent absorptivity of 50% in the near to mid IR regime. The electrical characteristics of the device were measured depending on temperature and biasing conditions. A strong dependence of the resistance on the temperature was shown with a maximum temperature coefficient of resistance of -0.07 K-1atT = 100 K. Heat transport simulations using COMSOL were used to optimize the responsivity and temporal response, which are in good agreement with the experimental results. Further, lock-in measurements were used to benchmark the bolometer device at room temperature with respect to detectivity and noise equivalent power. Finally, we demonstrated that by operating the bolometer with a network of parallel nanowires, both detectivity and noise equivalent power can be effectively improved.

2.
Nanotechnology ; 32(14): 145711, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276352

RESUMO

Group-IV based light sources are one of the missing links towards fully CMOS compatible photonic circuits. Combining both silicon process compatibility and a pseudo-direct band gap, germanium is one of the most viable candidates. To overcome the limitation of the indirect band gap and turning germanium in an efficient light emitting material, the application of strain has been proven as a promising approach. So far the experimental verification of strain induced bandgap modifications were based on optical measurements and restricted to moderate strain levels. In this work, we demonstrate a methodology enabling to apply tunable tensile strain to intrinsic germanium [Formula: see text] nanowires and simultaneously perform in situ optical as well as electrical characterization. Combining I/V measurements and µ-Raman spectroscopy at various strain levels, we determined a decrease of the resistivity by almost three orders of magnitude for strain levels of âˆ¼5%. Thereof, we calculated the strain induced band gap narrowing in remarkable accordance to recently published simulation results for moderate strain levels up to 3.6%. Deviations for ultrahigh strain values are discussed with respect to surface reconfiguration and reduced charge carrier scattering time.

3.
Nanotechnology ; 31(44): 445204, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32647099

RESUMO

Despite being known of for decades, the actual realization of memory devices based on the memristive effect is progressing slowly, due to processing requirements and the need for exotic materials which are not compatible with today's complementary-metal-oxide-semiconductor (CMOS) technology. Here, we report an experimental study on a Ge quantum wire device featuring distinct signatures of memristive behavior favorable for integration in CMOS platform technology. Embedding the quasi-1D Ge quantum wire into an electrostatically modulated back-gated field-effect transistor, we demonstrate that individual current transport channels can be addressed directly by controlling the surface trap assisted electrostatic gating. The resulting quantization of the current represents the ultimate limit of memristors with practically zero off-state current and low footprint. In addition, the proposed device has the advantage of non-destructive successive reading cycles capability. Importantly, our findings provide a framework towards fully CMOS compatible ultra-scaled Ge based memristors.

4.
Nano Lett ; 19(6): 3892-3897, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117757

RESUMO

The band offsets occurring at the abrupt heterointerfaces of suitable material combinations offer a powerful design tool for high performance or even new kinds of devices. Because of a large variety of applications for metal-semiconductor heterostructures and the promise of low-dimensional systems to present exceptional device characteristics, nanowire heterostructures gained particular interest over the past decade. However, compared to those achieved by mature two-dimensional processing techniques, quasi one-dimensional (1D) heterostructures often suffer from low interface and crystalline quality. For the GaAs-Au system, we demonstrate exemplarily a new approach to generate epitaxial and single crystalline metal-semiconductor nanowire heterostructures with atomically sharp interfaces using standard semiconductor processing techniques. Spatially resolved Raman measurements exclude any significant strain at the lattice mismatched metal-semiconductor heterojunction. On the basis of experimental results and simulation work, a novel self-assembled mechanism is demonstrated which yields one-step reconfiguration of a semiconductor-metal core-shell nanowire to a quasi 1D axially stacked heterostructure via flash lamp annealing. Transmission electron microscopy imaging and electrical characterization confirm the high interface quality resulting in the lowest Schottky barrier for the GaAs-Au system reported to date. Without limiting the generality, this novel approach will open up new opportunities in the syntheses of other metal-semiconductor nanowire heterostructures and thus facilitate the research of high-quality interfaces in metal-semiconductor nanocontacts.

5.
Nano Lett ; 18(11): 7230-7237, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30335400

RESUMO

The combination of Moore's law and Dennard's scaling rules have constituted the fundamental guidelines for the silicon-based semiconductor industry for decades. Furthermore, the enormous growth of global data volume has pushed the demand for complex and densely packed devices. In recent years, it has become clear that wired interconnects impose increasingly severe speed and power limitations onto integrated circuits as scaling slows toward a halt. To overcome these limitations, there is a clear need for optical data processing. Despite significant progress in the development of silicon photonics, light sources remain challenging owing to the indirect bandgap of group IV materials. It is therefore highly desirable to develop new concepts for a silicon light source that meets efficiency and footprint requirements similar to their electronic counterparts. Here, we demonstrate an electrically driven and tunable silicon light source by matching the resonant modes of a silver nanocavity with the hot luminescence spectrum of an avalanching p-n junction. The cavity significantly enhances phonon-assisted recombination of hot carriers by tailoring the local density of states at the size-tunable resonance. Such tunable nanoscale emitter may be of great interest for short-reach communications, microdisplays or lab-on-chip applications.

6.
Nano Lett ; 18(12): 7692-7697, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427682

RESUMO

The electrical and optical properties of low-dimensional nanostructures depend critically on size and geometry and may differ distinctly from those of their bulk counterparts. In particular, ultrathin semiconducting layers as well as nanowires have already proven the feasibility to realize and study quantum size effects enabling novel ultrascaled devices. Further, plasmonic metal nanostructures attracted recently a lot of attention because of appealing near-field-mediated enhancement effects. Thus, combining metal and semiconducting constituents in quasi one-dimensional heterostructures will pave the way for ultrascaled systems and high-performance devices with exceptional electrical, optical, and plasmonic functionality. This Letter reports on the sophisticated fabrication and structural properties of axial and radial Al-Ge and Al-Si nanowire heterostructures, synthesized by a thermally induced exchange reaction of single-crystalline Ge-Si core-shell nanowires and Al pads. This enables a self-aligned metallic contact formation to Ge segments beyond lithographic limitations as well as ultrathin semiconducting layers wrapped around monocrystalline Al core nanowires. High-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and µ-Raman measurements proved the composition and perfect crystallinity of these metal-semiconductor nanowire heterostructures. This exemplary selective replacement of Ge by Al represents a general approach for the elaboration of radial and axial metal-semiconductor heterostructures in various Ge-semiconductor heterostructures.

7.
Nanotechnology ; 29(47): 474001, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30192233

RESUMO

A method for cross-sectional doping of individual Si/SiO2 core/shell nanowires (NWs) is presented. P and B atoms are laterally implanted at different depths in the Si core. The healing of the implantation-related damage together with the electrical activation of the dopants takes place via solid phase epitaxy driven by millisecond-range flash lamp annealing. Electrical measurements through a bevel formed along the NW enabled us to demonstrate the concurrent formation of n- and p-type regions in individual Si/SiO2 core/shell NWs. These results might pave the way for ion beam doping of nanostructured semiconductors produced by using either top-down or bottom-up approaches.

8.
Nano Lett ; 15(7): 4783-7, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26052733

RESUMO

In this Letter we report on the exploration of axial metal/semiconductor (Al/Ge) nanowire heterostructures with abrupt interfaces. The formation process is enabled by a thermal induced exchange reaction between the vapor-liquid-solid grown Ge nanowire and Al contact pads due to the substantially different diffusion behavior of Ge in Al and vice versa. Temperature-dependent I-V measurements revealed the metallic properties of the crystalline Al nanowire segments with a maximum current carrying capacity of about 0.8 MA/cm(2). Transmission electron microscopy (TEM) characterization has confirmed both the composition and crystalline nature of the pure Al nanowire segments. A very sharp interface between the ⟨111⟩ oriented Ge nanowire and the reacted Al part was observed with a Schottky barrier height of 361 meV. To demonstrate the potential of this approach, a monolithic Al/Ge/Al heterostructure was used to fabricate a novel impact ionization device.

9.
Nano Lett ; 13(1): 21-5, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23214964

RESUMO

Controlling the morphology, electronic properties, and growth direction of nanowires (NWs) is an important aspect regarding their integration into devices on technologically relevant scales. Using the vapor-solid-solid (VSS) approach, with Ni as a catalyst and octachlorotrisilane (Si(3)Cl(8), OCTS) as a precursor, we achieved epitaxial growth of rectangular-shaped Si-NWs, which may have important implications for electronic mobility and light scattering in NW devices. The process parameters were adjusted to form cubic α-NiSi(2) particles which further act as the shaping element leading to prismatic Si-NWs. Along with the uncommon shape, also different crystallographic growth directions, namely, [100] and [110], were observed on the very same sample. The growth orientations were determined by analysis of the NWs' azimuths on the Si (111) substrates as well as by detailed transmission electron microscopy (TEM) and selected area electron diffraction (SAED) investigations.

10.
Nano Lett ; 12(12): 6230-4, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23146072

RESUMO

In this Letter we present the electrical and electro-optical characterization of single crystalline germanium nanowires (NWs) under tensile strain conditions. The measurements were performed on vapor-liquid-solid (VLS) grown germanium (Ge) NWs, monolithically integrated into a micromechanical 3-point strain module. Uniaxial stress is applied along the ⟨111⟩ growth direction of individual, 100 nm thick Ge NWs while at the same time performing electrical and optical characterization at room temperature. Compared to bulk germanium, an anomalously high and negative-signed piezoresistive coefficient has been found. Spectrally resolved photocurrent characterization on strained NWs gives experimental evidence on the strain-induced modifications of the band structure. Particularly we are revealing a rapid decrease in resistivity and a red-shift in photocurrent spectra under high strain conditions. For a tensile strain of 1.8%, resistivity decreased by a factor of 30, and the photocurrent spectra shifted by 88 meV. Individual stressed NWs are recognized as an ideal platform for the exploration of strain-related electronic and optical effects and may contribute significantly to the realization of novel optoelectronic devices, strain-enhanced field-effect transistors (FETs), or highly sensitive strain gauges.

11.
Nanotechnology ; 22(3): 035201, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21149968

RESUMO

In this work, we demonstrate an approach to tune the electrical behavior of our Ω-gated germanium-nanowire (Ge-NW) MOSFETs by focused ion beam (FIB) implantation. For the MOSFETs, 35 nm thick Ge-NWs are covered by atomic layer deposition (ALD) of a high-κ gate dielectric. With the Ω-shaped metal gate acting as implantation mask, highly doped source/drain (S/D) contacts are formed in a self-aligned process by FIB implantation. Notably, without any dopant activation by annealing, the devices exhibit more than three orders of magnitude higher I(ON) currents, an improved I(ON)/I(OFF) ratio, a higher mobility and a reduced subthreshold slope of 140 mV/decade compared to identical Ge-NW MOSFETs without FIB implantation.

12.
Nanotechnology ; 22(14): 145306, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368355

RESUMO

We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.


Assuntos
Boro/química , Diamante/química , Técnicas Eletroquímicas/instrumentação , Ouro/química , Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Algoritmos , Cromo/química , Técnicas Eletroquímicas/métodos , Eletroquímica , Microeletrodos , Microscopia Eletrônica de Varredura , Microscopia de Varredura por Sonda/instrumentação , Microscopia de Varredura por Sonda/métodos , Silício/química , Compostos de Silício/química , Espectrometria por Raios X , Titânio/química
13.
Nano Lett ; 10(8): 3204-8, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698638

RESUMO

In this paper we demonstrate that under ultrahigh strain conditions p-type single crystal silicon nanowires possess an anomalous piezoresistance effect. The measurements were performed on vapor-liquid-solid (VLS) grown Si nanowires, monolithically integrated in a microelectro-mechanical loading module. The special setup enables the application of pure uniaxial tensile strain along the <111> growth direction of individual, 100 nm thick Si nanowires while simultaneously measuring the resistance of the nanowires. For low strain levels (nanowire elongation less than 0.8%), our measurements revealed the expected positive piezoresistance effect, whereas for ultrahigh strain levels a transition to anomalous negative piezoresistance was observed. For the maximum tensile strain of 3.5%, the resistance of the Si nanowires decreased by a factor of 10. Even at these high strain amplitudes, no fatigue failures are observed for several hundred loading cycles. The ability to fabricate single-crystal nanowires that are widely free of structural defects will it make possible to apply high strain without fracturing to other materials as well, therefore in any application where crystallinity and strain are important, the idea of making nanowires should be of a high value.

14.
Nano Lett ; 10(10): 3957-61, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20843058

RESUMO

The applicability of a novel silicon precursor with respect to reasonable nanowire (NW) growth rates, feasibility of epitaxial NW growth and versatility with respect to diverse catalysts was investigated. Epitaxial growth of Si-NWs was achieved using octochlorotrisilane (OCTS) as Si precursor and Au as catalyst. In contrast to the synthesis approach with SiCl(4) as precursor, OCTS provides Si without the addition of H(2). By optimizing the growth conditions, effective NW synthesis is shown for alternative catalysts, in particular, Cu, Ag, Ni, and Pt with the latter two being compatible to complementary metal-oxide-semiconductor technology. As for these catalysts, the growth temperatures are lower than the lowest liquid eutectic; we suggest that the catalyst particle is in the solid state during NW growth and that a solid-phase diffusion process, either in the bulk, on the surface, or both, must be responsible for NW nucleation.

15.
Nanotechnology ; 21(43): 435704, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20876973

RESUMO

Ge nanowires (NWs) about 2 µm long and 35 nm in diameter are grown heteroepitaxially on Si(111) substrates in a hot wall low-pressure chemical vapor deposition (LP-CVD) system using Au as a catalyst and GeH(4) as precursor. Individual NWs are contacted to Cu pads via e-beam lithography, thermal evaporation and lift-off techniques. Self-aligned and atomically sharp quasi-metallic copper-germanide source/drain contacts are achieved by a thermal activated phase formation process. The Cu(3)Ge segments emerge from the Cu contact pads through axial diffusion of Cu which was controlled in situ by SEM, thus the active channel length of the MOSFET is adjusted without any restrictions from a lithographic process. Finally the conductivity of the channel is enhanced by Ga(+) implantation leading to a high performance Ω-gated Ge-NW MOSFET with saturation currents of a few microamperes.

16.
Nano Lett ; 9(5): 1830-4, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19323479

RESUMO

In this letter, we demonstrate the simultaneous vertical integration of self-contacting and highly oriented nanowires (NWs) into airbridge structures, which have been developed into surround gated metal oxide semiconductor field effect transistors (MOSFETs). With the use of conventional photolithography, reactive ion etching (RIE), and low pressure chemical vapor deposition, a suspended vertical NW architecture is formed on a silicon on insulator (SOI) substrate where the nanodevice will later be fabricated on. The vapor-liquid-solid (VLS) grown Si-NWs are contacted to prepatterned airbridges by a self-aligned process, and there is no need for postgrowth NW assembly or alignment. Such vertical NW architecture can be easily integrated into existing ICs processes opening the path to a new generation of nonconventional nano devices. To demonstrate the potential of this method, surround gated vertical MOSFETs have been fabricated with a highly simplified integration scheme combining top-down and bottom-up approaches, but in the same way, one can think about the realization of integrated nano sensors on the industrial scale.

17.
Nano Lett ; 9(11): 3739-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19691284

RESUMO

In this letter, we report on the formation, of copper-germanide/germanium nanowire (NW) heterostructures with atomically sharp interfaces. The copper-germanide (Cu3Ge) formation process is enabled by a chemical reaction between metallic Cu pads and vapor-liquid-solid (VLS) grown Ge-NWs. The atomic scale aligned formation of the Cu3Ge segments is controlled by in situ SEM monitoring at 310 degrees C thereby enabling length control of the intrinsic Ge-NW down to a few nanometers. The single crystal Cu3Ge/Ge/Cu3Ge heterostructures were used to fabricate p-type Ge-NW field effect transistors with Schottky Cu3Ge source/drain contacts. Temperature dependent I /V measurements revealed the metallic properties of the Cu3Ge contacts with a maximum current density of 5 x 10(7) A/cm2. According to the thermoionic emission theory, we determined an effective Schottky barrier height of 218 meV.

18.
Nanotechnology ; 20(43): 434017, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19801756

RESUMO

Well-defined monoclinic nanostructures of beta- Ga(2)O(3) were grown in a chemical vapor deposition apparatus using metallic gallium and oxygen as sources. Stable growth conditions were deduced for nanorods, nanoribbons, nanowires and cones. The types of nanostructures are determined by the growth temperature. We suppose that the vapor-solid growth mechanism rules the growth of nanoribbons and rods. For the nanowires we observed catalytic gold droplets atop, characteristic for the VLS growth mechanism with an extremely high growth rate of up to 10 microm min(-1). Nanowires grown on Al(2)O(3) substrates showed an excellent tendency to grow epitaxially, mapping the hexagonal symmetry of Al(2)O(3)(0001).

19.
Nanoscale ; 10(41): 19443-19449, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30311606

RESUMO

Metastable germanium-tin alloys are promising materials for optoelectronics and optics. Here we present the first electrical characterization of highly crystalline Ge0.81Sn0.19 nanowires grown in a solution-based process. The investigated Ge0.81Sn0.19 nanowires reveal ohmic behavior with resistivity of the nanowire material in the range of ∼1 × 10-4Ω m. The temperature-dependent resistivity measurements demonstrate the semiconducting behavior. Moreover, failure of devices upon heating to moderate temperatures initiating material degradation has been investigated to illustrate that characterization and device operation of these highly metastable materials have to be carefully conducted.

20.
Ultramicroscopy ; 100(3-4): 127-34, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15231302

RESUMO

With the integration of submicro- and nanoelectrodes into atomic force microscopy (AFM) probes using microfabrication techniques, an elegant approach combining scanning electrochemical microscopy (SECM) with AFM has recently been introduced. Simultaneous contact mode imaging of a micropatterned sample with immobilized enzyme spots and imaging of enzyme activity is shown. In contrast to force spectroscopy the conversion of an enzymatic byproduct is directly detected during AFM imaging and correlated to the activity of the enzyme.


Assuntos
Enzimas Imobilizadas/metabolismo , Microscopia de Força Atômica , Peroxidase/metabolismo , Eletroquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA