Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Soc Nephrol ; 32(6): 1498-1512, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33811157

RESUMO

BACKGROUND: The transepithelial transport of electrolytes, solutes, and water in the kidney is a well-orchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not only mediate potassium recycling for proper Na+,K+-ATPase function but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. METHODS: A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. RESULTS: We identified mutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. CONCLUSIONS: Biallelic variants in KCNJ16 were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling as well as distal tubular salt reabsorption.


Assuntos
Desequilíbrio Ácido-Base/genética , Perda Auditiva Neurossensorial/genética , Hipopotassemia/genética , Nefropatias/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Adulto , Alelos , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Túbulos Renais , Mutação com Perda de Função , Masculino , Camundongos , Néfrons/metabolismo , Oócitos , Linhagem , Fenótipo , RNA Mensageiro/metabolismo , Reabsorção Renal/genética , Sais/metabolismo , Sequenciamento do Exoma , Xenopus laevis , Adulto Jovem
2.
Genome Res ; 28(1): 100-110, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162642

RESUMO

Stargardt disease is caused by variants in the ABCA4 gene, a significant part of which are noncanonical splice site (NCSS) variants. In case a gene of interest is not expressed in available somatic cells, small genomic fragments carrying potential disease-associated variants are tested for splice abnormalities using in vitro splice assays. We recently discovered that when using small minigenes lacking the proper genomic context, in vitro results do not correlate with splice defects observed in patient cells. We therefore devised a novel strategy in which a bacterial artificial chromosome was employed to generate midigenes, splice vectors of varying lengths (up to 11.7 kb) covering almost the entire ABCA4 gene. These midigenes were used to analyze the effect of all 44 reported and three novel NCSS variants on ABCA4 pre-mRNA splicing. Intriguingly, multi-exon skipping events were observed, as well as exon elongation and intron retention. The analysis of all reported NCSS variants in ABCA4 allowed us to reveal the nature of aberrant splicing events and to classify the severity of these mutations based on the residual fraction of wild-type mRNA. Our strategy to generate large overlapping splice vectors carrying multiple exons, creating a toolbox for robust and high-throughput analysis of splice variants, can be applied to all human genes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Degeneração Macular/congênito , Precursores de RNA/genética , Sítios de Splice de RNA , Splicing de RNA , Transportadores de Cassetes de Ligação de ATP/biossíntese , Adulto , Feminino , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Precursores de RNA/metabolismo , Doença de Stargardt
3.
Am J Hum Genet ; 101(5): 815-823, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100092

RESUMO

Fibronectin is a master organizer of extracellular matrices (ECMs) and promotes the assembly of collagens, fibrillin-1, and other proteins. It is also known to play roles in skeletal tissues through its secretion by osteoblasts, chondrocytes, and mesenchymal cells. Spondylometaphyseal dysplasias (SMDs) comprise a diverse group of skeletal dysplasias and often manifest as short stature, growth-plate irregularities, and vertebral anomalies, such as scoliosis. By comparing the exomes of individuals with SMD with the radiographic appearance of "corner fractures" at metaphyses, we identified three individuals with fibronectin (FN1) variants affecting highly conserved residues. Furthermore, using matching tools and the SkelDys emailing list, we identified other individuals with de novo FN1 variants and a similar phenotype. The severe scoliosis in most individuals and rare developmental coxa vara distinguish individuals with FN1 mutations from those with classical Sutcliffe-type SMD. To study functional consequences of these FN1 mutations on the protein level, we introduced three disease-associated missense variants (p.Cys87Phe [c.260G>T], p.Tyr240Asp [c.718T>G], and p.Cys260Gly [c.778T>G]) into a recombinant secreted N-terminal 70 kDa fragment (rF70K) and the full-length fibronectin (rFN). The wild-type rF70K and rFN were secreted into the culture medium, whereas all mutant proteins were either not secreted or secreted at significantly lower amounts. Immunofluorescence analysis demonstrated increased intracellular retention of the mutant proteins. In summary, FN1 mutations that cause defective fibronectin secretion are found in SMD, and we thus provide additional evidence for a critical function of fibronectin in cartilage and bone.


Assuntos
Fibronectinas/genética , Fraturas Ósseas/genética , Mutação/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/genética , Osso e Ossos/patologia , Cartilagem/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Masculino , Fenótipo , Escoliose/genética
4.
Gastroenterology ; 155(1): 130-143.e15, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29604290

RESUMO

BACKGROUND & AIMS: Congenital diarrheal disorders are rare inherited intestinal disorders characterized by intractable, sometimes life-threatening, diarrhea and nutrient malabsorption; some have been associated with mutations in diacylglycerol-acyltransferase 1 (DGAT1), which catalyzes formation of triacylglycerol from diacylglycerol and acyl-CoA. We investigated the mechanisms by which DGAT1 deficiency contributes to intestinal failure using patient-derived organoids. METHODS: We collected blood samples from 10 patients, from 6 unrelated pedigrees, who presented with early-onset severe diarrhea and/or vomiting, hypoalbuminemia, and/or (fatal) protein-losing enteropathy with intestinal failure; we performed next-generation sequencing analysis of DNA from 8 patients. Organoids were generated from duodenal biopsies from 3 patients and 3 healthy individuals (controls). Caco-2 cells and patient-derived dermal fibroblasts were transfected or transduced with vectors that express full-length or mutant forms of DGAT1 or full-length DGAT2. We performed CRISPR/Cas9-guided disruption of DGAT1 in control intestinal organoids. Cells and organoids were analyzed by immunoblot, immunofluorescence, flow cytometry, chromatography, quantitative real-time polymerase chain reaction, and for the activity of caspases 3 and 7. RESULTS: In the 10 patients, we identified 5 bi-allelic loss-of-function mutations in DGAT1. In patient-derived fibroblasts and organoids, the mutations reduced expression of DGAT1 protein and altered triacylglycerol metabolism, resulting in decreased lipid droplet formation after oleic acid addition. Expression of full-length DGAT2 in patient-derived fibroblasts restored formation of lipid droplets. Organoids derived from patients with DGAT1 mutations were more susceptible to lipid-induced cell death than control organoids. CONCLUSIONS: We identified a large cohort of patients with congenital diarrheal disorders with mutations in DGAT1 that reduced expression of its product; dermal fibroblasts and intestinal organoids derived from these patients had altered lipid metabolism and were susceptible to lipid-induced cell death. Expression of full-length wildtype DGAT1 or DGAT2 restored normal lipid metabolism in these cells. These findings indicate the importance of DGAT1 in fat metabolism and lipotoxicity in the intestinal epithelium. A fat-free diet might serve as the first line of therapy for patients with reduced DGAT1 expression. It is important to identify genetic variants associated with congenital diarrheal disorders for proper diagnosis and selection of treatment strategies.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Duodeno/metabolismo , Fibroblastos/metabolismo , Hipoalbuminemia/genética , Transtornos do Metabolismo dos Lipídeos/genética , Organoides/metabolismo , Enteropatias Perdedoras de Proteínas/genética , Células CACO-2 , Estudos de Casos e Controles , Caspase 3/metabolismo , Caspase 7/metabolismo , Criança , Pré-Escolar , Consanguinidade , Derme/citologia , Diacilglicerol O-Aciltransferase/deficiência , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Países Baixos , Forbóis , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Turquia
5.
Am J Kidney Dis ; 73(3): 400-403, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30241959

RESUMO

Mutations in the NPHS2 gene, which encodes the podocyte slit diaphragm protein podocin, cause autosomal recessive steroid-resistant nephrotic syndrome (Online Mendelian Inheritance in Man [OMIM] #600995). Basic research and clinical studies have provided important insights about genotype-phenotype correlations. This knowledge allows personalized genetic (risk) counseling and should lead to changes in the advice given to patients. A patient who carries the R229Q variant (which has a high allele frequency of 3.7% in the European population) in combination with a pathogenic variant in exon 7 or 8 is at high risk for developing nephrotic syndrome that may not manifest before adulthood, whereas a patient with 2 pathogenic variants will develop congenital or childhood-onset nephrotic syndrome. In contrast, a patient who carries the R229Q variant in combination with a pathogenic variant in exons 1 to 6 is unlikely to develop nephrotic syndrome. In this article, we review the emerging knowledge about the NPHS2 gene and translate these findings from the bench to practical advice for the clinical bedside.


Assuntos
Aconselhamento Genético , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Síndrome Nefrótica/genética , Variação Genética , Humanos
6.
Reprod Biomed Online ; 39(6): 963-968, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31672438

RESUMO

RESEARCH QUESTION: Congenital bilateral absence of vas deferens (CBAVD) is characterized by 'obstructive azoospermia' in male patients with primary infertility. In the routine clinical workup of infertile men, patients with an absence of vas deferens are screened for CFTR variants. However, current genetic testing panels do not cover all variants, missing some CBAVD cases. Here, CFTR testing was explored by targeted next-generation sequencing (NGS) to improve variant detection. DESIGN: Five individuals with heterozygous pathogenic CFTR variants were identified using targeted NGS in a cohort of 1112 idiopathic infertile men with azoospermia or severe oligozoospermia. Pre-screening exclusion criteria were CBAVD by clinical examination with positive CFTR sequence analysis as part of routine fertility workup. RESULTS: Cases 1, 2 and 3 presented with CBAVD after which CFTR screening by mutation panel analysis was negative. Case 4 presented with congenital unilateral absence of vas deferens, after which CFTR panel analysis identified a heterozygous p.(Phe508del) variant. Case 5 presented with a palpable vas deferens so CFTR panel analysis was not offered. In all five men, targeted NGS revealed additional pathogenic variants: p.(Arg117Cys) and p.(Arg1158*) (case 1); p.(Asp110His) and p.(Ser945Leu) (case 2); p.(Arg248Thr) and p.(Phe508Cys) (case 3); p.(Gly463Ser) (case 4); p.(Phe508del) (case 4 and 5); and p.(Arg117His) (case 5). CONCLUSIONS: Targeted NGS led to the detection of five infertile men with CFTR variants who would otherwise have remained undiagnosed after routine genetic screening during the fertility workup for azoospermia or severe oligozoospermia. Given the wide availability of affordable targeted NGS, the data suggest that full gene analysis, and not mutation panels, should be considered to screen CFTR in azoospermic men.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Oligospermia/genética , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Ducto Deferente/anormalidades
7.
Am J Hum Genet ; 97(6): 904-13, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637980

RESUMO

Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.


Assuntos
Microtia Congênita/genética , Nanismo/genética , Geminina/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Mutação , Patela/anormalidades , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Ciclo Celular/genética , Pré-Escolar , Microtia Congênita/metabolismo , Nanismo/metabolismo , Nanismo/patologia , Éxons , Feminino , Geminina/metabolismo , Expressão Gênica , Genes Dominantes , Transtornos do Crescimento/metabolismo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Masculino , Micrognatismo/metabolismo , Dados de Sequência Molecular , Patela/metabolismo , Linhagem , Estabilidade Proteica , Proteólise , Splicing de RNA , Alinhamento de Sequência
8.
J Am Soc Nephrol ; 28(11): 3291-3299, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28710092

RESUMO

Liddle syndrome is an autosomal dominant form of hypokalemic hypertension due to mutations in the ß- or γ-subunit of the epithelial sodium channel (ENaC). Here, we describe a family with Liddle syndrome due to a mutation in αENaC. The proband was referred because of resistant hypokalemic hypertension, suppressed renin and aldosterone, and no mutations in the genes encoding ß- or γENaC. Exome sequencing revealed a heterozygous, nonconservative T>C single-nucleotide mutation in αENaC that substituted Cys479 with Arg (C479R). C479 is a highly conserved residue in the extracellular domain of ENaC and likely involved in a disulfide bridge with the partner cysteine C394. In oocytes, the C479R and C394S mutations resulted in similar twofold increases in amiloride-sensitive ENaC current. Quantification of mature cleaved αENaC in membrane fractions showed that the number of channels did not increase with these mutations. Trypsin, which increases open probability of the channel by proteolytic cleavage, resulted in significantly higher currents in the wild type than in C479R or C394S mutants. In summary, a mutation in the extracellular domain of αENaC causes Liddle syndrome by increasing intrinsic channel activity. This mechanism differs from that of the ß- and γ-mutations, which result in an increase in channel density at the cell surface. This mutation may explain other cases of patients with resistant hypertension and also provides novel insight into ENaC activation, which is relevant for kidney sodium reabsorption and salt-sensitive hypertension.


Assuntos
Canais Epiteliais de Sódio/genética , Síndrome de Liddle/genética , Mutação de Sentido Incorreto , Humanos , Linhagem
9.
J Am Soc Nephrol ; 28(10): 3118-3128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28674042

RESUMO

Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.


Assuntos
Alcalose/genética , Claudinas/genética , Hipopotassemia/genética , Erros Inatos do Transporte Tubular Renal/genética , Adolescente , Feminino , Humanos , Masculino , Adulto Jovem
10.
Hum Mutat ; 38(11): 1592-1605, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801929

RESUMO

Microdeletions of the Y chromosome (YCMs), Klinefelter syndrome (47,XXY), and CFTR mutations are known genetic causes of severe male infertility, but the majority of cases remain idiopathic. Here, we describe a novel method using single molecule Molecular Inversion Probes (smMIPs), to screen infertile men for mutations and copy number variations affecting known disease genes. We designed a set of 4,525 smMIPs targeting the coding regions of causal (n = 6) and candidate (n = 101) male infertility genes. After extensive validation, we screened 1,112 idiopathic infertile men with non-obstructive azoospermia or severe oligozoospermia. In addition to five chromosome YCMs and six other sex chromosomal anomalies, we identified five patients with rare recessive mutations in CFTR as well as a patient with a rare heterozygous frameshift mutation in SYCP3 that may be of clinical relevance. This results in a genetic diagnosis in 11-17 patients (1%-1.5%), a yield that may increase significantly when more genes are confidently linked to male infertility. In conclusion, we developed a flexible and scalable method to reliably detect genetic causes of male infertility. The assay consolidates the detection of different types of genetic variation while increasing the diagnostic yield and detection precision at the same or lower price compared with currently used methods.


Assuntos
Azoospermia/diagnóstico , Azoospermia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Oligospermia/diagnóstico , Oligospermia/genética , Aberrações Cromossômicas , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Estudos de Associação Genética/métodos , Estudos de Associação Genética/normas , Testes Genéticos/métodos , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Fenótipo , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Aberrações dos Cromossomos Sexuais , Contagem de Espermatozoides
11.
Am J Hum Genet ; 94(5): 649-61, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726472

RESUMO

Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.


Assuntos
Deficiência Intelectual/genética , Transtornos Mentais/genética , Proteínas Nucleares/genética , Distúrbios da Fala/genética , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína/genética , Fatores de Transcrição
12.
Genet Med ; 19(6): 667-675, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28574513

RESUMO

PURPOSE: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10-20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. METHODS: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. RESULTS: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to -5.8% per disorder). CONCLUSIONS: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Doenças Genéticas Inatas/genética , Sequenciamento Completo do Genoma , Estudos de Coortes , Genoma Humano , Humanos , Padrões de Herança , Masculino , Polimorfismo de Nucleotídeo Único
13.
Genome Med ; 16(1): 32, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355605

RESUMO

BACKGROUND: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento do Exoma
14.
Hum Mutat ; 34(12): 1721-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123792

RESUMO

The advent of massive parallel sequencing is rapidly changing the strategies employed for the genetic diagnosis and research of rare diseases that involve a large number of genes. So far it is not clear whether these approaches perform significantly better than conventional single gene testing as requested by clinicians. The current yield of this traditional diagnostic approach depends on a complex of factors that include gene-specific phenotype traits, and the relative frequency of the involvement of specific genes. To gauge the impact of the paradigm shift that is occurring in molecular diagnostics, we assessed traditional Sanger-based sequencing (in 2011) and exome sequencing followed by targeted bioinformatics analysis (in 2012) for five different conditions that are highly heterogeneous, and for which our center provides molecular diagnosis. We find that exome sequencing has a much higher diagnostic yield than Sanger sequencing for deafness, blindness, mitochondrial disease, and movement disorders. For microsatellite-stable colorectal cancer, this was low under both strategies. Even if all genes that could have been ordered by physicians had been tested, the larger number of genes captured by the exome would still have led to a clearly superior diagnostic yield at a fraction of the cost.


Assuntos
Exoma , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Aconselhamento Genético , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
15.
J Med Genet ; 49(3): 179-83, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22368300

RESUMO

BACKGROUND: DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. AIM: To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. METHODS: A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. RESULTS: In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. CONCLUSION: Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.


Assuntos
Anormalidades Múltiplas/genética , Movimento Celular , Dineínas do Citoplasma/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Neurônios/fisiologia , Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/patologia , Animais , Sequência de Bases , Criança , Análise Mutacional de DNA , Exoma , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/enzimologia , Deficiência Intelectual/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular
16.
Kidney Med ; 5(4): 100607, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36925663

RESUMO

Rationale & Objective: Mono-allelic variants in COL4A3 and COL4A4 (COL4A3/COL4A4) have been identified in a spectrum of glomerular basement membrane nephropathies, including thin basement membrane nephropathy and autosomal dominant Alport syndrome. With the increasing use of next generation sequencing, mono-allelic COL4A3/COL4A4 variants are detected more frequently, but phenotypic heterogeneity impedes counseling. We aimed to investigate the phenotypic spectrum, kidney biopsy results, and segregation patterns of patients with mono-allelic COL4A3/COL4A4 variants identified by whole exome sequencing. Study Design: Case series. Setting & Participants: We evaluated clinical and pathologic characteristics of 17 Dutch index patients with mono-allelic variants in COL4A3/COL4A4 detected by diagnostic whole exome sequencing and 25 affected family members with variants confirmed by Sanger sequencing. Results: Eight different mono-allelic COL4A3/COL4A4 variants were identified across members of 11 families, comprising 7 glycine substituted missense variants and 1 frameshift variant. All index patients had microscopic hematuria at clinical presentation (median age 43 years) and 14 had (micro)albuminuria/proteinuria. All family members showed co-segregation of the variant with at least hematuria. At end of follow-up of all 42 individuals (median age 54 years), 16/42 patients had kidney function impairment, of whom 6 had kidney failure. Reports of kidney biopsies of 14 patients described thin basement membrane nephropathy, focal segmental glomerulosclerosis, minimal change lesions, and Alport syndrome. Electron microscopy images of 7 patients showed a significantly thinner glomerular basement membrane compared with images of patients with idiopathic focal segmental glomerulosclerosis and other hereditary glomerular diseases. No genotype-phenotype correlations could be established. Limitations: Retrospective design, ascertainment bias toward severe kidney phenotypes, and familial hematuria. Conclusions: This study confirms the wide phenotypic spectrum associated with mono-allelic COL4A3/COL4A4 variants, extending from isolated microscopic hematuria to kidney failure with high intra- and interfamilial variability.

17.
Kidney Int Rep ; 7(1): 87-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005317

RESUMO

INTRODUCTION: Guidelines advise initial therapy with corticosteroids (CSs) in patients with presumed primary focal segmental glomerular sclerosis (pFSGS). Many patients do not achieve complete remission (CR) after 8 or 16 weeks. Although these patients are considered steroid resistant, clinical outcomes are ill defined. METHODS: A retrospective cohort study of patients with pFSGS who were referred between January 1995 and December 2014. Data of clinical presentation until last follow-up were collected from patient records. RESULTS: A total of 51 patients (median age 47 years, 20 female/31 male) were included (median follow-up 7.1 years). There were 10 patients who achieved partial response (PR) at 8 weeks. High-dose CS monotherapy was continued for a median of 17 weeks (interquartile range [IQR] 11-21 weeks) (total duration 56 weeks [IQR 28-83 weeks]). With CSs, the cumulative incidence of CR + PR was 18% and 35%, respectively. Of 24 patients with persistent nephrotic-range proteinuria, 22 received additional immunosuppressive (IS) therapy, resulting in CR in 3 (14%) and PR in 11 patients (50%). A decrease of >20% of proteinuria at 8 weeks predicted response. In addition, 8 patients (36%) were considered primary nonresponders. A genetic cause was found in 2 patients. Proteinuria at end of follow-up was 1.2 g (IQR 0.4-3.0 g/24 hours or g/10 mmol creatinine). Renal survival at 3, 5, and 10 years was 92%, 87%, and 64%, respectively. CONCLUSION: Patients with presumed pFSGS often respond late to IS therapy. A decrease in proteinuria of >20% after 8 weeks of therapy is a predictor of responsiveness. Regardless of CR in some patients, improved biomarkers are needed to predict response/outcomes in patients with pFSGS.

18.
NPJ Genom Med ; 7(1): 65, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351915

RESUMO

Pathogenic variants in the OPN1LW/OPN1MW gene cluster are causal for a range of mild to severe visual impairments with color deficiencies. The widely utilized short-read next-generation sequencing (NGS) is inappropriate for the analysis of the OPN1LW/OPN1MW gene cluster and many patients with pathogenic variants stay underdiagnosed. A diagnostic genetic assay was developed for the OPN1LW/OPN1MW gene cluster, consisting of copy number analysis via multiplex ligation-dependent probe amplification and sequence analysis via long-read circular consensus sequencing. Performance was determined on 50 clinical samples referred for genetic confirmation of the clinical diagnosis (n = 43) or carrier status analysis (n = 7). A broad range of pathogenic haplotypes were detected, including deletions, hybrid genes, single variants and combinations of variants. The developed genetic assay for the OPN1LW/OPN1MW gene cluster is a diagnostic test that can detect both structural and nucleotide variants with a straightforward analysis, improving diagnostic care of patients with visual impairment.

19.
Pan Afr Med J ; 40: 105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887979

RESUMO

Neonatal hyperparathyroidism is a rare disease caused by a homozygous inactivating mutation in the calcium sensing receptor gene. It presents early in life with life threatening manifestations of hypercalcemia, if left untreated the condition may be lethal. This is the first case series reported from Sudan. Three Sudanese siblings presented with severe symptoms of hypercalcemia in the form of polyuria, failure to thrive and multiple bone fractures. Serum calcium and parathyroid hormone levels were very high with low phosphate and normal alkaline phosphatase levels. Ultrasonography and sestamibi scan were normal and did not assist in diagnosing their condition. Medical management was a great challenge due to unavailability of medications such as parentral bisphosphonates and calcimimetics. Parathyroidectomy was inevitable. Tissue biopsies revealed parathyroid hyperplasia and no adenoma. Gene sequencing revealed a homozygous missense mutation: c 2038 C T p (Arg680Cys) in two siblings, both parents were heterozygous for the same missense mutation. Our report reflects the challenges in diagnosis and management of neonatal hyperparathyroidism in resource limited countries. We also highlight the importance of genetic testing in the diagnosis and management of such cases in countries with high rates of consanguineous marriage.


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Cálcio , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/etiologia , Recém-Nascido , Hormônio Paratireóideo , Paratireoidectomia , Receptores de Detecção de Cálcio
20.
Eur J Med Genet ; 64(3): 104160, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33556586

RESUMO

The development of a polycystic liver is a characteristic of the monogenic disorders: autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and autosomal dominant polycystic liver disease (ADPLD). Respectively two and one genes mainly cause ADPKD and ARPKD. In contrast, ADPLD is caused by at least six different genes which combined do not even explain the disease development in over half of the ADPLD population. Genetic testing is mainly performed to confirm the likelihood of developing PKD and if renal therapy is essential. However, pure ADPLD patients are frequently not genetically screened as knowledge about the genotype-phenotype correlation is currently limited. This paper will clarify the essence of genetic testing in ADPLD patients.


Assuntos
Cistos/genética , Testes Genéticos/métodos , Hepatopatias/genética , Cistos/diagnóstico , Loci Gênicos , Testes Genéticos/normas , Humanos , Hepatopatias/diagnóstico , Guias de Prática Clínica como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA