Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Mol Cell ; 81(14): 2901-2913.e5, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34157309

RESUMO

Polynucleotide phosphorylase (PNPase) is an ancient exoribonuclease conserved in the course of evolution and is found in species as diverse as bacteria and humans. Paradoxically, Escherichia coli PNPase can act not only as an RNA degrading enzyme but also by an unknown mechanism as a chaperone for small regulatory RNAs (sRNAs), with pleiotropic consequences for gene regulation. We present structures of the ternary assembly formed by PNPase, the RNA chaperone Hfq, and sRNA and show that this complex boosts sRNA stability in vitro. Comparison of structures for PNPase in RNA carrier and degradation modes reveals how the RNA is rerouted away from the active site through interactions with Hfq and the KH and S1 domains. Together, these data explain how PNPase is repurposed to protect sRNAs from cellular ribonucleases such as RNase E and could aid RNA presentation to facilitate regulatory actions on target genes.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Bacteriano/genética , Domínio Catalítico/genética , Endorribonucleases/genética , Exorribonucleases/genética , Regulação Bacteriana da Expressão Gênica/genética , Chaperonas Moleculares/genética , Estabilidade de RNA/genética , Pequeno RNA não Traduzido/genética
2.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991829

RESUMO

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Precursores de RNA/metabolismo , Ribonucleases/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Microscopia Crioeletrônica , Modelos Moleculares , Precursores de RNA/ultraestrutura , Ribonucleases/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Especificidade por Substrato
3.
EMBO J ; 42(3): e111129, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504222

RESUMO

The widely occurring bacterial RNA chaperone Hfq is a key factor in the post-transcriptional control of hundreds of genes in Pseudomonas aeruginosa. How this broadly acting protein can contribute to the regulatory requirements of many different genes remains puzzling. Here, we describe cryo-EM structures of higher order assemblies formed by Hfq and its partner protein Crc on control regions of different P. aeruginosa target mRNAs. Our results show that these assemblies have mRNA-specific quaternary architectures resulting from the combination of multivalent protein-protein interfaces and recognition of patterns in the RNA sequence. The structural polymorphism of these ribonucleoprotein assemblies enables selective translational repression of many different target mRNAs. This system elucidates how highly complex regulatory pathways can evolve with a minimal economy of proteinogenic components in combination with RNA sequence and fold.


Assuntos
Proteínas de Bactérias , Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
4.
EMBO J ; 42(2): e112574, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36504162

RESUMO

Biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled by intricate post-transcriptional networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthtase in Escherichia coli, but when bound by RapZ protein, the sRNA becomes inactivated through cleavage by the endoribonuclease RNase E. Here, we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the RapZ tetrameric quaternary structure to structural repeats in the sRNA. The nucleic acid is contacted by RapZ mostly through a highly conserved domain that shares an evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a precleavage intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised by the enzyme. The structures provide a framework for understanding how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors may be recognised for processing by RNase E.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ribonucleoproteínas/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética
5.
Nature ; 585(7823): 129-134, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848250

RESUMO

Transmembrane channels and pores have key roles in fundamental biological processes1 and in biotechnological applications such as DNA nanopore sequencing2-4, resulting in considerable interest in the design of pore-containing proteins. Synthetic amphiphilic peptides have been found to form ion channels5,6, and there have been recent advances in de novo membrane protein design7,8 and in redesigning naturally occurring channel-containing proteins9,10. However, the de novo design of stable, well-defined transmembrane protein pores that are capable of conducting ions selectively or are large enough to enable the passage of small-molecule fluorophores remains an outstanding challenge11,12. Here we report the computational design of protein pores formed by two concentric rings of α-helices that are stable and monodisperse in both their water-soluble and their transmembrane forms. Crystal structures of the water-soluble forms of a 12-helical pore and a 16-helical pore closely match the computational design models. Patch-clamp electrophysiology experiments show that, when expressed in insect cells, the transmembrane form of the 12-helix pore enables the passage of ions across the membrane with high selectivity for potassium over sodium; ion passage is blocked by specific chemical modification at the pore entrance. When incorporated into liposomes using in vitro protein synthesis, the transmembrane form of the 16-helix pore-but not the 12-helix pore-enables the passage of biotinylated Alexa Fluor 488. A cryo-electron microscopy structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer channels and pores for a wide variety of applications.


Assuntos
Simulação por Computador , Genes Sintéticos/genética , Canais Iônicos/química , Canais Iônicos/genética , Modelos Moleculares , Biologia Sintética , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Condutividade Elétrica , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrazinas , Canais Iônicos/metabolismo , Transporte de Íons , Lipossomos/metabolismo , Técnicas de Patch-Clamp , Porinas/química , Porinas/genética , Porinas/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Solubilidade , Água/química
6.
Mol Cell ; 72(2): 275-285.e4, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270108

RESUMO

The endoribonuclease RNase E is a principal factor in RNA turnover and processing that helps to exercise fine control of gene expression in bacteria. While its catalytic activity can be strongly influenced by the chemical identity of the 5' end of RNA substrates, the enzyme can also cleave numerous substrates irrespective of the chemistry of their 5' ends through a mechanism that has remained largely unexplained. We report structural and functional data illuminating details of both operational modes. Our crystal structure of RNase E in complex with the sRNA RprA reveals a duplex recognition site that saddles an inter-protomer surface to help present substrates for cleavage. Our data also reveal an autoinhibitory pocket that modulates the overall activity of the ribonuclease. Taking these findings together, we propose how RNase E uses versatile modes of RNA recognition to achieve optimal activity and specificity.


Assuntos
Endorribonucleases/genética , Especificidade por Substrato/genética , Sequência de Aminoácidos , Catálise , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Subunidades Proteicas/genética , RNA/genética , RNA Bacteriano/genética , Alinhamento de Sequência
7.
Nucleic Acids Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842944

RESUMO

The ompD transcript, encoding an outer membrane porin in Salmonella, harbors a controlling element in its coding region that base-pairs imperfectly with a 'seed' region of the small regulatory RNA (sRNA) MicC. When tagged with the sRNA, the ompD mRNA is cleaved downstream of the pairing site by the conserved endoribonuclease RNase E, leading to transcript destruction. We observe that the sRNA-induced cleavage site is accessible to RNase E in vitro upon recruitment of ompD into the 30S translation pre-initiation complex (PIC) in the presence of the degradosome components. Evaluation of substrate accessibility suggests that the paused 30S PIC presents the mRNA for targeted recognition and degradation. Ribonuclease activity on PIC-bound ompD is critically dependent on the recruitment of RNase E into the multi-enzyme RNA degradosome, and our data suggest a process of substrate capture and handover to catalytic sites within the degradosome, in which sequential steps of seed matching and duplex remodelling contribute to cleavage efficiency. Our findings support a putative mechanism of surveillance at translation that potentially terminates gene expression efficiently and rapidly in response to signals provided by regulatory RNA.

8.
PLoS Biol ; 20(4): e3001623, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35452449

RESUMO

Molecular biology holds a vast potential for tackling climate change and biodiversity loss. Yet, it is largely absent from the current strategies. We call for a community-wide action to bring molecular biology to the forefront of climate change solutions.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Biologia Molecular
9.
Mol Cell ; 65(1): 39-51, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28061332

RESUMO

Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in Salmonella enterica. A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3' fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Precursores de RNA/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Salmonella enterica/enzimologia , Regiões 3' não Traduzidas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Biologia Computacional , Bases de Dados Genéticas , Endorribonucleases/química , Endorribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Salmonella enterica/genética , Relação Estrutura-Atividade , Transcriptoma , Uridina/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357971

RESUMO

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Assuntos
Proteínas de Transporte de Cátions , Heme , Hemoglobinas , Proteínas de Transporte de Cátions/química , Microscopia Crioeletrônica , Heme/química , Hemoglobinas/química , Humanos , Ferro/metabolismo
11.
Bioessays ; 44(7): e2200035, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451123

RESUMO

In all domains of life, transmembrane proteins from the ATP-binding cassette (ABC) transporter family drive the translocation of diverse substances across lipid bilayers. In pathogenic fungi, the ABC transporters of the pleiotropic drug resistance (PDR) subfamily confer antibiotic resistance and so are of interest as therapeutic targets. They also drive the quest for understanding how ABC transporters can generally accommodate such a wide range of substrates. The Pdr5 transporter from baker's yeast is representative of the PDR group and, ever since its discovery more than 30 years ago, has been the subject of extensive functional analyses. A new perspective of these studies has been recently provided in the framework of the first electron cryo-microscopy structures of Pdr5, as well as emergent applications of machine learning in the field. Taken together, the old and the new developments have been used to propose a mechanism for the transport process in PDR proteins. This mechanism involves a "flippase" step that moves the substrates from one leaflet of the bilayer to the other, as a central element of cellular efflux.


Assuntos
Dança , Proteínas de Saccharomyces cerevisiae , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Medicamentos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Mol Microbiol ; 117(1): 102-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415624

RESUMO

In organisms from all domains of life, multi-enzyme assemblies play central roles in defining transcript lifetimes and facilitating RNA-mediated regulation of gene expression. An assembly dedicated to such roles, known as the RNA degradosome, is found amongst bacteria from highly diverse lineages. About a fifth of the assembly mass of the degradosome of Escherichia coli and related species is predicted to be intrinsically disordered - a property that has been sustained for over a billion years of bacterial molecular history and stands in marked contrast to the high degree of sequence variation of that same region. Here, we characterize the conformational dynamics of the degradosome using a hybrid structural biology approach that combines solution scattering with ad hoc ensemble modelling, cryo-electron microscopy, and other biophysical methods. The E. coli degradosome can form punctate bodies in vivo that may facilitate its functional activities, and based on our results, we propose an electrostatic switch model to account for the propensity of the degradosome to undergo programmable puncta formation.


Assuntos
Endorribonucleases , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos , Polirribonucleotídeo Nucleotidiltransferase , RNA Helicases , RNA Bacteriano/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Ensaio de Desvio de Mobilidade Eletroforética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Estruturais , Mutação , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Eletricidade Estática , Tomografia
13.
RNA ; 27(11): 1339-1352, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341070

RESUMO

The conserved endoribonuclease RNase E dominates the dynamic landscape of RNA metabolism and underpins control mediated by small regulatory RNAs in diverse bacterial species. We explored the enzyme's hydrolytic mechanism, allosteric activation, and interplay with partner proteins in the multicomponent RNA degradosome assembly of Escherichia coli. RNase E cleaves single-stranded RNA with preference to attack the phosphate located at the 5' nucleotide preceding uracil, and we corroborate key interactions that select that base. Unexpectedly, RNase E activity is impeded strongly when the recognized uracil is isomerized to 5-ribosyluracil (pseudouridine), from which we infer the detailed geometry of the hydrolytic attack process. Kinetics analyses support models for recognition of secondary structure in substrates by RNase E and for allosteric autoregulation. The catalytic power of the enzyme is boosted when it is assembled into the multienzyme RNA degradosome, most likely as a consequence of substrate capture and presentation. Our results rationalize the origins of substrate preferences of RNase E and illuminate its catalytic mechanism, supporting the roles of allosteric domain closure and cooperation with other components of the RNA degradosome complex.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Pseudouridina/metabolismo , RNA Helicases/metabolismo , RNA Bacteriano/metabolismo , Sítios de Ligação , Endorribonucleases/química , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Complexos Multienzimáticos/genética , Conformação de Ácido Nucleico , Polirribonucleotídeo Nucleotidiltransferase/genética , Conformação Proteica , RNA Helicases/genética , RNA Bacteriano/genética
14.
J Biol Chem ; 296: 100656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857481

RESUMO

The conserved protein Hfq is a key factor in the RNA-mediated control of gene expression in most known bacteria. The transient intermediates Hfq forms with RNA support intricate and robust regulatory networks. In Pseudomonas, Hfq recognizes repeats of adenine-purine-any nucleotide (ARN) in target mRNAs via its distal binding side, and together with the catabolite repression control (Crc) protein, assembles into a translation-repression complex. Earlier experiments yielded static, ensemble-averaged structures of the complex, but details of its interface dynamics and assembly pathway remained elusive. Using explicit solvent atomistic molecular dynamics simulations, we modeled the extensive dynamics of the Hfq-RNA interface and found implications for the assembly of the complex. We predict that syn/anti flips of the adenine nucleotides in each ARN repeat contribute to a dynamic recognition mechanism between the Hfq distal side and mRNA targets. We identify a previously unknown binding pocket that can accept any nucleotide and propose that it may serve as a 'status quo' staging point, providing nonspecific binding affinity, until Crc engages the Hfq-RNA binary complex. The dynamical components of the Hfq-RNA recognition can speed up screening of the pool of the surrounding RNAs, participate in rapid accommodation of the RNA on the protein surface, and facilitate competition among different RNAs. The register of Crc in the ternary assembly could be defined by the recognition of a guanine-specific base-phosphate interaction between the first and last ARN repeats of the bound RNA. This dynamic substrate recognition provides structural rationale for the stepwise assembly of multicomponent ribonucleoprotein complexes nucleated by Hfq-RNA binding.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Motivos de Nucleotídeos , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/metabolismo , Sítios de Ligação , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/genética , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/genética , RNA Bacteriano/química , RNA Bacteriano/genética
15.
J Virol ; 95(14): e0066321, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33963053

RESUMO

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Assuntos
COVID-19 , Genoma Viral , Motivos de Nucleotídeos , Dobramento de RNA , RNA Viral , SARS-CoV-2/fisiologia , Replicação Viral , Animais , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Células Vero
16.
Proc Natl Acad Sci U S A ; 116(22): 10978-10987, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31076551

RESUMO

We have solved the X-ray crystal structure of the RNA chaperone protein Hfq from the alpha-proteobacterium Caulobacter crescentus to 2.15-Å resolution, resolving the conserved core of the protein and the entire C-terminal domain (CTD). The structure reveals that the CTD of neighboring hexamers pack in crystal contacts, and that the acidic residues at the C-terminal tip of the protein interact with positive residues on the rim of Hfq, as has been recently proposed for a mechanism of modulating RNA binding. De novo computational models predict a similar docking of the acidic tip residues against the core of Hfq. We also show that C. crescentus Hfq has sRNA binding and RNA annealing activities and is capable of facilitating the annealing of certain Escherichia coli sRNA:mRNA pairs in vivo. Finally, we describe how the Hfq CTD and its acidic tip residues provide a mechanism to modulate annealing activity and substrate specificity in various bacteria.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Fator Proteico 1 do Hospedeiro , RNA Bacteriano , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/química , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Cristalografia por Raios X , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Ligação Proteica , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo
17.
Nature ; 509(7501): 512-5, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24747401

RESUMO

The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB-TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Lipoproteínas/química , Proteínas de Membrana Transportadoras/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Farmacorresistência Bacteriana , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
18.
Mol Cell ; 47(6): 943-53, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22902561

RESUMO

Numerous small non-coding RNAs (sRNAs) in bacteria modulate rates of translation initiation and degradation of target mRNAs, which they recognize through base-pairing facilitated by the RNA chaperone Hfq. Recent evidence indicates that the ternary complex of Hfq, sRNA and mRNA guides endoribonuclease RNase E to initiate turnover of both the RNAs. We show that a sRNA not only guides RNase E to a defined site in a target RNA, but also allosterically activates the enzyme by presenting a monophosphate group at the 5'-end of the cognate-pairing "seed." Moreover, in the absence of the target the 5'-monophosphate makes the sRNA seed region vulnerable to an attack by RNase E against which Hfq confers no protection. These results suggest that the chemical signature and pairing status of the sRNA seed region may help to both 'proofread' recognition and activate mRNA cleavage, as part of a dynamic process involving cooperation of RNA, Hfq and RNase E.


Assuntos
Endorribonucleases/metabolismo , Porinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Endorribonucleases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Salmonella/genética , Salmonella/metabolismo
19.
Nucleic Acids Res ; 46(3): 1470-1485, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29244160

RESUMO

In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.


Assuntos
Proteínas de Bactérias/genética , Repressão Catabólica , Fator Proteico 1 do Hospedeiro/genética , Biossíntese de Proteínas , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética , Proteínas Repressoras/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Metabolismo dos Carboidratos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/metabolismo , Cinética , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Regulon , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcriptoma
20.
Nucleic Acids Res ; 46(1): 387-402, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29136196

RESUMO

The RNA degradosome is a multi-enzyme assembly that plays a central role in the RNA metabolism of Escherichia coli and numerous other bacterial species including pathogens. At the core of the assembly is the endoribonuclease RNase E, one of the largest E. coli proteins and also one that bears the greatest region predicted to be natively unstructured. This extensive unstructured region, situated in the C-terminal half of RNase E, is punctuated with conserved short linear motifs that recruit partner proteins, direct RNA interactions, and enable association with the cytoplasmic membrane. We have structurally characterized a subassembly of the degradosome-comprising a 248-residue segment of the natively unstructured part of RNase E, the DEAD-box helicase RhlB and the glycolytic enzyme enolase, and provide evidence that it serves as a flexible recognition centre that can co-recruit small regulatory RNA and the RNA chaperone Hfq. Our results support a model in which the degradosome captures substrates and regulatory RNAs through the recognition centre, facilitates pairing to cognate transcripts and presents the target to the ribonuclease active sites of the greater assembly for cooperative degradation or processing.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , RNA Bacteriano/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Endorribonucleases/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Modelos Moleculares , Complexos Multienzimáticos/genética , Conformação de Ácido Nucleico , Polirribonucleotídeo Nucleotidiltransferase/genética , Ligação Proteica , Domínios Proteicos , RNA Helicases/genética , RNA Bacteriano/química , RNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA