Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 132(23)2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31719160

RESUMO

Low-density lipoprotein (LDL) deposition, aggregation and retention in the endothelial sub-intima are critical initiating events during atherosclerosis. Macrophages digest aggregated LDL (agLDL) through a process called exophagy. High-density lipoprotein (HDL) plays an atheroprotective role, but studies attempting to exploit it therapeutically have been unsuccessful, highlighting gaps in our current understanding of HDL function. Here, we characterized the role of HDL during exophagy of agLDL. We find that atherosclerotic plaque macrophages contact agLDL and form an extracellular digestive compartment similar to that observed in vitro During macrophage catabolism of agLDL in vitro, levels of free cholesterol in the agLDL are increased. HDL can extract free cholesterol directly from this agLDL and inhibit macrophage foam cell formation. Cholesterol-balanced hydroxypropyl-ß-cyclodextrin similarly reduced macrophage cholesterol uptake and foam cell formation. Finally, we show that HDL can directly extract free cholesterol, but not cholesterol esters, from agLDL in the absence of cells. Together, these results suggest that the actions of HDL can directly extract free cholesterol from agLDL during catabolism, and provide a new context in which to view the complex relationship between HDL and atherosclerosis.


Assuntos
Colesterol/química , Ciclodextrinas/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Linhagem Celular , Ciclodextrinas/genética , Feminino , Células Espumosas/metabolismo , Humanos , Imuno-Histoquímica , Lipoproteínas HDL/genética , Lipoproteínas LDL/uso terapêutico , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Espectrometria de Fluorescência
2.
J Cell Sci ; 129(5): 1072-82, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801085

RESUMO

Monocyte-derived cells use an extracellular, acidic, lytic compartment (a lysosomal synapse) for initial degradation of large objects or species bound to the extracellular matrix. Akin to osteoclast degradation of bone, extracellular catabolism is used by macrophages to degrade aggregates of low density lipoprotein (LDL) similar to those encountered during atherogenesis. However, unlike osteoclast catabolism, the lysosomal synapse is a highly dynamic and intricate structure. In this study, we use high resolution three dimensional imaging to visualize compartments formed by macrophages to catabolize aggregated LDL. We show that these compartments are topologically complex, have a convoluted structure and contain sub-regions that are acidified. These sub-regions are characterized by a close apposition of the macrophage plasma membrane and aggregates of LDL that are still connected to the extracellular space. Compartment formation is dependent on local actin polymerization. However, once formed, compartments are able to maintain a pH gradient when actin is depolymerized. These observations explain how compartments are able to maintain a proton gradient while remaining outside the boundaries of the plasma membrane.


Assuntos
Lipoproteínas LDL/metabolismo , Lisossomos/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ésteres do Colesterol/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Lisossomos/ultraestrutura , Camundongos , Agregados Proteicos , Multimerização Proteica , Proteólise , Células RAW 264.7
3.
Traffic ; 15(12): 1406-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25243614

RESUMO

The endocytic pathway is a complex network of highly dynamic organelles, which has been traditionally studied by quantitative fluorescence microscopy. The data generated by this method can be overwhelming and its analysis, even for the skilled microscopist, is tedious and error-prone. We developed SpatTrack, an open source, platform-independent program collecting a variety of methods for analysis of vesicle dynamics and distribution in living cells. SpatTrack performs 2D particle tracking, trajectory analysis and fitting of diffusion models to the calculated mean square displacement. It allows for spatial analysis of detected vesicle patterns including calculation of the radial distribution function and particle-based colocalization. Importantly, all analysis tools are supported by Monte Carlo simulations of synthetic images. This allows the user to assess the reliability of the analysis and to study alternative scenarios. We demonstrate the functionality of SpatTrack by performing a detailed imaging study of internalized fluorescence-tagged Niemann Pick C2 (NPC2) protein in human disease fibroblasts. Using SpatTrack, we show that NPC2 rescued the cholesterol-storage phenotype from a subpopulation of late endosomes/lysosomes (LE/LYSs). This was paralleled by repositioning and active transport of NPC2-containing vesicles to the cell surface. The potential of SpatTrack for other applications in intracellular transport studies will be discussed.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Endocitose , Interpretação de Imagem Assistida por Computador/métodos , Software , Proteínas de Transporte/metabolismo , Linhagem Celular , Glicoproteínas/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Transporte Proteico , Proteínas de Transporte Vesicular
4.
Biophys J ; 105(9): 2082-92, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24209853

RESUMO

Cholesterol tagged with the BODIPY fluorophore via the central difluoroboron moiety of the dye (B-Chol) is a promising probe for studying intracellular cholesterol dynamics. We synthesized a new BODIPY-cholesterol probe (B-P-Chol) with the fluorophore attached via one of its pyrrole rings to carbon-24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal, respectively. B-Chol is in all three membrane systems much stronger oriented than B-P-Chol. Interestingly, we found that the lateral diffusion in the PM was two times slower for B-Chol than for B-P-Chol, although we found no difference in lateral diffusion in model membranes. Stimulated emission depletion microscopy, performed for the first time, to our knowledge, with fluorescent sterols, revealed that the difference in lateral diffusion of the BODIPY-cholesterol probes was not caused by anomalous subdiffusion, because diffusion of both analogs in the PM was free but not hindered. Our combined measurements show that the position and orientation of the BODIPY moiety in cholesterol analogs have a severe influence on lateral diffusion specifically in the PM of living cells.


Assuntos
Compostos de Boro/química , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Difusão , Corantes Fluorescentes/química , Microscopia
5.
BMC Bioinformatics ; 13: 296, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23148417

RESUMO

BACKGROUND: Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs) for further analysis which is subjective and does not allow for comparing different cells and experimental settings. RESULTS: We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp) function is fitted to fluorescence loss (FL) inside and outside the bleached region. We show by reaction-diffusion simulations, that the StrExp function can describe both, binding/barrier-limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP), we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ) disease proteins like mutant huntingtin (mtHtt) can form large aggregates called inclusion bodies (IB's). The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB's to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt) between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and experiments. CONCLUSIONS: We present two complementary methods for quantitative analysis of FLIP experiments in living cells. They provide spatial maps of exchange dynamics and absolute binding parameters of fluorescent molecules to moving intracellular entities, respectively. Our methods should be of great value for quantitative studies of intracellular transport.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/estatística & dados numéricos , Fotodegradação , Proteínas/metabolismo , Citoplasma/metabolismo , Difusão , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Huntingtina , Cinética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Transporte Proteico
6.
J Lipid Res ; 53(12): 2716-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23033213

RESUMO

STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , RNA Interferente Pequeno/metabolismo , Membrana Celular/química , Retículo Endoplasmático/química , Células Hep G2 , Humanos , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Células Tumorais Cultivadas
7.
Chem Phys Lipids ; 235: 105047, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422548

RESUMO

The Niemann-Pick C2 protein (NPC2) is a sterol transfer protein in the lumen of late endosomes and lysosomes (LE/LYSs). Absence of functional NPC2 leads to endo-lysosomal buildup of cholesterol and other lipids. How NPC2's known capacity to transport cholesterol between model membranes is linked to its function in living cells is not known. Using quantitative live-cell imaging combined with modeling of the efflux kinetics, we show that NPC2-deficient human fibroblasts can export the cholesterol analog dehydroergosterol (DHE) from LE/LYSs. Internalized NPC2 accelerated sterol efflux extensively, accompanied by reallocation of LE/LYSs containing fluorescent NPC2 and DHE to the cell periphery. Using quantitative fluorescence loss in photobleaching of TopFluor-cholesterol (TF-Chol), we estimate a residence time for a rapidly exchanging sterol pool in LE/LYSs localized in close proximity to the plasma membrane (PM), of less than one min and observed non-vesicular sterol exchange between LE/LYSs and the PM. Excess sterol was released from the PM by shedding of cholesterol-rich vesicles. The ultrastructure of such vesicles was analyzed by combined fluorescence and cryo soft X-ray tomography (SXT), revealing that they can contain lysosomal cargo and intraluminal vesicles. Treating cells with apoprotein A1 and with nuclear receptor liver X-receptor (LXR) agonists to upregulate expression of ABC transporters enhanced cholesterol efflux from the PM, at least partly by accelerating vesicle release. We conclude that NPC2 inside LE/LYSs facilitates non-vesicular sterol exchange with the PM for subsequent sterol efflux to acceptor proteins and for shedding of sterol-rich vesicles from the cell surface.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células Cultivadas , Humanos , Lisossomos/metabolismo
8.
Chem Phys Lipids ; 213: 48-61, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29580834

RESUMO

Niemann-Pick disease type C2 is a lipid storage disorder in which mutations in the NPC2 protein cause accumulation of lipoprotein-derived cholesterol in late endosomes and lysosomes (LE/LYSs). Whether cholesterol delivered by other means to NPC2 deficient cells also accumulates in LE/LYSs is currently unknown. We show that the close cholesterol analog dehydroergosterol (DHE), when delivered to the plasma membrane (PM) accumulates in LE/LYSs of human fibroblasts lacking functional NPC2. We measured two different time scales of sterol diffusion; while DHE rich LE/LYSs moved by slow anomalous diffusion in disease cells (D ∼ 4.6∙10-4 µm2/sec; α∼0.76), a small pool of sterol could exchange rapidly with D ∼ 3 µm2/s between LE/LYSs, as shown by fluorescence recovery after photobleaching (FRAP). By quantitative lipid mass spectrometry we found that esterification of 13C-labeled cholesterol but not of DHE is reduced 10-fold in disease fibroblasts compared to control cells. Internalized NPC2 rescued the sterol storage phenotype and strongly expanded the dynamic sterol pool seen in FRAP experiments. Together, our study shows that cholesterol esterification and trafficking of sterols between the PM and LE/LYSs depends on a functional NPC2 protein. NPC2 likely acts inside LE/LYSs from where it increases non-vesicular sterol exchange with other organelles.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Ergosterol/análogos & derivados , Glicoproteínas/metabolismo , Transporte Biológico , Isótopos de Carbono/química , Linhagem Celular , Colesterol/química , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Ergosterol/química , Ergosterol/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência , Imagem com Lapso de Tempo , Proteínas de Transporte Vesicular
9.
Methods Mol Biol ; 1594: 93-128, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28456978

RESUMO

Late endosomes and lysosomes (LE/LYSs) play a central role in trafficking of endocytic cargo, secretion of exosomes, and hydrolysis of ingested proteins and lipids. Failure in such processes can lead to lysosomal storage disorders in which a particular metabolite accumulates within LE/LYSs. Analysis of endocytic trafficking relies heavily on quantitative fluorescence microscopy, but evaluation of the huge image data sets is challenging and demands computer-assisted statistical tools. Here, we describe how to use SpatTrack ( www.sdu.dk/bmb/spattrack ), an imaging toolbox, which we developed for quantification of the distribution and dynamics of endo-lysosomal cargo from fluorescence images of living cells. First, we explain how to analyze experimental images of endocytic processes in Niemann Pick C2 disease fibroblasts using SpatTrack. We demonstrate how to quantify the location of the sterol-binding protein NPC2 in LE/LYSs relative to cholesterol -rich lysosomal storage organelles (LSOs) stained with filipin. Second, we show how to simulate realistic vesicle patterns in the cell geometry using Markov Chain Monte Carlo and suitable inter-vesicle and cell-vesicle interaction potentials. Finally, we use such synthetic vesicle patterns as "ground truth" for validation of two-channel analysis tools in SpatTrack, revealing their high reliability. An improved version of SpatTrack for microscopy-based quantification of cargo transport through the endo-lysosomal system accompanies this protocol.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Lisossomos/metabolismo , Animais , Colesterol/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Microscopia de Fluorescência , Método de Monte Carlo , Doenças de Niemann-Pick/metabolismo , Transporte Proteico/fisiologia
10.
Methods Mol Biol ; 1583: 111-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28205171

RESUMO

Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first part of this protocol, we describe how to synthesize and image CTL in living cells relative to caveolin, a structural component of caveolae. In the second part, we explain in detail how to perform time-lapse experiments of commercially available BODIPY-tagged cholesterol (TopFluor-cholesterol®; TF-Chol) in comparison to DHE. Finally, using two-photon time-lapse imaging data of TF-Chol, we demonstrate how to use our imaging toolbox SpatTrack for tracking sterol rich vesicles in living cells over time.


Assuntos
Compostos de Boro , Cavéolas/metabolismo , Colestenos , Colesterol/metabolismo , Ergosterol/análogos & derivados , Corantes Fluorescentes , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Compostos de Boro/química , Compostos de Boro/farmacologia , Células CHO , Cavéolas/química , Colestenos/síntese química , Colestenos/química , Colestenos/farmacologia , Colesterol/química , Cricetulus , Ergosterol/síntese química , Ergosterol/química , Ergosterol/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia
11.
Mol Biol Cell ; 28(8): 1111-1122, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28209730

RESUMO

Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12-15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Esteróis/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Endocitose , Ergosterol/análogos & derivados , Ergosterol/metabolismo , Humanos , Ovinos
12.
Chem Phys Lipids ; 194: 12-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26291493

RESUMO

Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences and collaborative efforts with Bob Bittman for studying diffusion in the plasma membrane (PM) and uptake of BChol in a quantitative manner. For that purpose, we used a variety of fluorescence approaches including fluorescence correlation spectroscopy and its imaging variants, fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We also describe pulse-chase studies from the PM using BChol in direct comparison to DHE. Based on the gathered imaging data, we present a two-step kinetic model for sterol transport between PM and recycling endosomes. In addition, we highlight the suitability of BChol for determining transport of lipoprotein-derived sterol using electron microscopy (EM) and show that this approach ideally complements fluorescence studies.


Assuntos
Compostos de Boro/metabolismo , Colesterol/metabolismo , Difusão , Corantes Fluorescentes/metabolismo , Animais , Transporte Biológico , Compostos de Boro/química , Membrana Celular/química , Membrana Celular/metabolismo , Sobrevivência Celular , Colesterol/química , Endossomos/química , Endossomos/metabolismo , Corantes Fluorescentes/química , Humanos
13.
Chem Phys Lipids ; 199: 106-135, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27016337

RESUMO

Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.


Assuntos
Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Imagem Molecular/métodos , Animais , Membrana Celular/química , Endocitose , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanotecnologia
14.
BMC Biophys ; 5: 20, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23078907

RESUMO

BACKGROUND: Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. RESULTS: We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 µm2/s. Number and brightness (N&B) analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 µm2/sα. On a longer time scale (t > ~5 s), a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 µm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity by ~40-50%. CONCLUSIONS: The mobility of sterol-containing vesicles on the short time scale could reflect dynamic rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both, microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local regulation of intracellular sterol transport.

15.
Mol Biol Cell ; 22(21): 4004-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900492

RESUMO

Nonvesicular transport of cholesterol plays an essential role in the distribution and regulation of cholesterol within cells, but it has been difficult to identify the key intracellular cholesterol transporters. The steroidogenic acute regulatory-related lipid-transfer (START) family of proteins is involved in several pathways of nonvesicular trafficking of sterols. Among them, STARD4 has been shown to increase intracellular cholesteryl ester formation and is controlled at the transcriptional level by sterol levels in cells. We found that STARD4 is very efficient in transporting sterol between membranes in vitro. Cholesterol levels are increased in STARD4-silenced cells, while sterol transport to the endocytic recycling compartment (ERC) and to the endoplasmic reticulum (ER) are enhanced upon STARD4 overexpression. STARD4 silencing attenuates cholesterol-mediated regulation of SREBP-2 activation, while its overexpression amplifies sterol sensing by SCAP/SREBP-2. To analyze STARD4's mode of action, we compared sterol transport mediated by STARD4 with that of a simple sterol carrier, methyl-ß-cyclodextrin (MCD), when STARD4 and MCD were overexpressed or injected into cells. Interestingly, STARD4 and cytosolic MCD act similarly by increasing the rate of transfer of sterol to the ERC and to the ER. Our results suggest that cholesterol transport mediated by STARD4 is an important component of the cholesterol homeostasis regulatory machinery.


Assuntos
Colesterol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ésteres do Colesterol/biossíntese , Retículo Endoplasmático/metabolismo , Ergosterol/análogos & derivados , Ergosterol/metabolismo , Esterificação , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/metabolismo , Técnicas de Silenciamento de Genes , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Estrutura Terciária de Proteína , Interferência de RNA , Esterol O-Aciltransferase/antagonistas & inibidores , Esterol O-Aciltransferase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Imagem com Lapso de Tempo , Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA