Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Am J Respir Crit Care Med ; 205(11): 1330-1336, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258444

RESUMO

Rationale: Care of emergency department (ED) patients with pneumonia can be challenging. Clinical decision support may decrease unnecessary variation and improve care. Objectives: To report patient outcomes and processes of care after deployment of electronic pneumonia clinical decision support (ePNa): a comprehensive, open loop, real-time clinical decision support embedded within the electronic health record. Methods: We conducted a pragmatic, stepped-wedge, cluster-controlled trial with deployment at 2-month intervals in 16 community hospitals. ePNa extracts real-time and historical data to guide diagnosis, risk stratification, microbiological studies, site of care, and antibiotic therapy. We included all adult ED patients with pneumonia over the course of 3 years identified by International Classification of Diseases, 10th Revision discharge coding confirmed by chest imaging. Measurements and Main Results: The median age of the 6,848 patients was 67 years (interquartile range, 50-79), and 48% were female; 64.8% were hospital admitted. Unadjusted mortality was 8.6% before and 4.8% after deployment. A mixed effects logistic regression model adjusting for severity of illness with hospital cluster as the random effect showed an adjusted odds ratio of 0.62 (0.49-0.79; P < 0.001) for 30-day all-cause mortality after deployment. Lower mortality was consistent across hospital clusters. ePNa-concordant antibiotic prescribing increased from 83.5% to 90.2% (P < 0.001). The mean time from ED admission to first antibiotic was 159.4 (156.9-161.9) minutes at baseline and 150.9 (144.1-157.8) minutes after deployment (P < 0.001). Outpatient disposition from the ED increased from 29.2% to 46.9%, whereas 7-day secondary hospital admission was unchanged (5.2% vs. 6.1%). ePNa was used by ED clinicians in 67% of eligible patients. Conclusions: ePNa deployment was associated with improved processes of care and lower mortality. Clinical trial registered with www.clinicaltrials.gov (NCT03358342).


Assuntos
Sistemas de Apoio a Decisões Clínicas , Pneumonia , Adulto , Idoso , Antibacterianos/uso terapêutico , Serviço Hospitalar de Emergência , Feminino , Hospitalização , Humanos , Masculino , Pneumonia/diagnóstico
2.
Radiology ; 305(3): 555-563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916673

RESUMO

As the role of artificial intelligence (AI) in clinical practice evolves, governance structures oversee the implementation, maintenance, and monitoring of clinical AI algorithms to enhance quality, manage resources, and ensure patient safety. In this article, a framework is established for the infrastructure required for clinical AI implementation and presents a road map for governance. The road map answers four key questions: Who decides which tools to implement? What factors should be considered when assessing an application for implementation? How should applications be implemented in clinical practice? Finally, how should tools be monitored and maintained after clinical implementation? Among the many challenges for the implementation of AI in clinical practice, devising flexible governance structures that can quickly adapt to a changing environment will be essential to ensure quality patient care and practice improvement objectives.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Algoritmos , Qualidade da Assistência à Saúde
3.
Pediatr Radiol ; 52(11): 2173-2177, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33978793

RESUMO

Artificial intelligence in medicine can help improve the accuracy and efficiency of diagnostics, selection of therapies and prediction of outcomes. Machine learning describes a subset of artificial intelligence that utilizes algorithms that can learn modeling functions from datasets. More complex algorithms, or deep learning, can similarly learn modeling functions for a variety of tasks leveraging massive complex datasets. The aggregation of artificial intelligence tools has the potential to improve many facets of health care delivery, from mundane tasks such as scheduling appointments to more complex functions such as enterprise management modeling and in-suite procedural assistance. Within radiology, the roles and use cases for artificial intelligence (inclusive of machine learning and deep learning) continue to evolve. Significant resources have been devoted to diagnostic radiology tasks via national radiology societies, academic medical centers and hundreds of commercial entities. Despite the widespread interest in artificial intelligence radiology solutions, there remains a lack of applications and discussion for use cases in interventional radiology (IR). Even more relevant to this audience, specific technologies tailored to the pediatric IR space are lacking. In this review, we describe artificial intelligence technologies that have been developed within the IR suite, as well as some future work, with a focus on artificial intelligence's potential impact in pediatric interventional medicine.


Assuntos
Inteligência Artificial , Radiologia Intervencionista , Algoritmos , Criança , Humanos , Aprendizado de Máquina , Radiografia
4.
Pediatr Radiol ; 52(11): 2094-2100, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996023

RESUMO

Artificial intelligence research in health care has undergone tremendous growth in the last several years thanks to the explosion of digital health care data and systems that can leverage large amounts of data to learn patterns that can be applied to clinical tasks. In addition, given broad acceleration in machine learning across industries like transportation, media and commerce, there has been a significant growth in demand for machine-learning practitioners such as engineers and data scientists, who have skill sets that can be applied to health care use cases but who simultaneously lack important health care domain expertise. The purpose of this paper is to discuss the requirements of building an artificial-intelligence research enterprise including the research team, technical software/hardware, and procurement and curation of health care data.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Inteligência , Aprendizado de Máquina , Software
6.
Radiology ; 299(1): E204-E213, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33399506

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is a global health care emergency. Although reverse-transcription polymerase chain reaction testing is the reference standard method to identify patients with COVID-19 infection, chest radiography and CT play a vital role in the detection and management of these patients. Prediction models for COVID-19 imaging are rapidly being developed to support medical decision making. However, inadequate availability of a diverse annotated data set has limited the performance and generalizability of existing models. To address this unmet need, the RSNA and Society of Thoracic Radiology collaborated to develop the RSNA International COVID-19 Open Radiology Database (RICORD). This database is the first multi-institutional, multinational, expert-annotated COVID-19 imaging data set. It is made freely available to the machine learning community as a research and educational resource for COVID-19 chest imaging. Pixel-level volumetric segmentation with clinical annotations was performed by thoracic radiology subspecialists for all COVID-19-positive thoracic CT scans. The labeling schema was coordinated with other international consensus panels and COVID-19 data annotation efforts, the European Society of Medical Imaging Informatics, the American College of Radiology, and the American Association of Physicists in Medicine. Study-level COVID-19 classification labels for chest radiographs were annotated by three radiologists, with majority vote adjudication by board-certified radiologists. RICORD consists of 240 thoracic CT scans and 1000 chest radiographs contributed from four international sites. It is anticipated that RICORD will ideally lead to prediction models that can demonstrate sustained performance across populations and health care systems.


Assuntos
COVID-19/diagnóstico por imagem , Bases de Dados Factuais/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Internacionalidade , Radiografia Torácica , Radiologia , SARS-CoV-2 , Sociedades Médicas , Tomografia Computadorizada por Raios X/estatística & dados numéricos
7.
Radiology ; 301(3): 692-699, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581608

RESUMO

Background Previous studies suggest that use of artificial intelligence (AI) algorithms as diagnostic aids may improve the quality of skeletal age assessment, though these studies lack evidence from clinical practice. Purpose To compare the accuracy and interpretation time of skeletal age assessment on hand radiograph examinations with and without the use of an AI algorithm as a diagnostic aid. Materials and Methods In this prospective randomized controlled trial, the accuracy of skeletal age assessment on hand radiograph examinations was performed with (n = 792) and without (n = 739) the AI algorithm as a diagnostic aid. For examinations with the AI algorithm, the radiologist was shown the AI interpretation as part of their routine clinical work and was permitted to accept or modify it. Hand radiographs were interpreted by 93 radiologists from six centers. The primary efficacy outcome was the mean absolute difference between the skeletal age dictated into the radiologists' signed report and the average interpretation of a panel of four radiologists not using a diagnostic aid. The secondary outcome was the interpretation time. A linear mixed-effects regression model with random center- and radiologist-level effects was used to compare the two experimental groups. Results Overall mean absolute difference was lower when radiologists used the AI algorithm compared with when they did not (5.36 months vs 5.95 months; P = .04). The proportions at which the absolute difference exceeded 12 months (9.3% vs 13.0%, P = .02) and 24 months (0.5% vs 1.8%, P = .02) were lower with the AI algorithm than without it. Median radiologist interpretation time was lower with the AI algorithm than without it (102 seconds vs 142 seconds, P = .001). Conclusion Use of an artificial intelligence algorithm improved skeletal age assessment accuracy and reduced interpretation times for radiologists, although differences were observed between centers. Clinical trial registration no. NCT03530098 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Rubin in this issue.


Assuntos
Determinação da Idade pelo Esqueleto/métodos , Inteligência Artificial , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Radiologistas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
J Magn Reson Imaging ; 54(2): 357-371, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32830874

RESUMO

Artificial intelligence algorithms based on principles of deep learning (DL) have made a large impact on the acquisition, reconstruction, and interpretation of MRI data. Despite the large number of retrospective studies using DL, there are fewer applications of DL in the clinic on a routine basis. To address this large translational gap, we review the recent publications to determine three major use cases that DL can have in MRI, namely, that of model-free image synthesis, model-based image reconstruction, and image or pixel-level classification. For each of these three areas, we provide a framework for important considerations that consist of appropriate model training paradigms, evaluation of model robustness, downstream clinical utility, opportunities for future advances, as well recommendations for best current practices. We draw inspiration for this framework from advances in computer vision in natural imaging as well as additional healthcare fields. We further emphasize the need for reproducibility of research studies through the sharing of datasets and software. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
9.
Radiology ; 295(3): 675-682, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32208097

RESUMO

In this article, the authors propose an ethical framework for using and sharing clinical data for the development of artificial intelligence (AI) applications. The philosophical premise is as follows: when clinical data are used to provide care, the primary purpose for acquiring the data is fulfilled. At that point, clinical data should be treated as a form of public good, to be used for the benefit of future patients. In their 2013 article, Faden et al argued that all who participate in the health care system, including patients, have a moral obligation to contribute to improving that system. The authors extend that framework to questions surrounding the secondary use of clinical data for AI applications. Specifically, the authors propose that all individuals and entities with access to clinical data become data stewards, with fiduciary (or trust) responsibilities to patients to carefully safeguard patient privacy, and to the public to ensure that the data are made widely available for the development of knowledge and tools to benefit future patients. According to this framework, the authors maintain that it is unethical for providers to "sell" clinical data to other parties by granting access to clinical data, especially under exclusive arrangements, in exchange for monetary or in-kind payments that exceed costs. The authors also propose that patient consent is not required before the data are used for secondary purposes when obtaining such consent is prohibitively costly or burdensome, as long as mechanisms are in place to ensure that ethical standards are strictly followed. Rather than debate whether patients or provider organizations "own" the data, the authors propose that clinical data are not owned at all in the traditional sense, but rather that all who interact with or control the data have an obligation to ensure that the data are used for the benefit of future patients and society.


Assuntos
Inteligência Artificial/ética , Diagnóstico por Imagem/ética , Ética Médica , Disseminação de Informação/ética , Humanos
10.
Radiology ; 295(1): 4-15, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068507

RESUMO

Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical implementation of AI algorithms include availability of sufficiently large, curated, and representative training data that includes expert labeling (eg, annotations). Current supervised AI methods require a curation process for data to optimally train, validate, and test algorithms. Currently, most research groups and industry have limited data access based on small sample sizes from small geographic areas. In addition, the preparation of data is a costly and time-intensive process, the results of which are algorithms with limited utility and poor generalization. In this article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm development, explain current limitations to data curation, and explore new approaches to address the problem of data availability.


Assuntos
Algoritmos , Coleta de Dados , Gerenciamento de Dados , Diagnóstico por Imagem , Aprendizado de Máquina , Humanos
11.
Radiology ; 296(3): 493-497, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32602829

RESUMO

Appropriate imaging is imperative in evaluating children with a primary hepatic malignancy such as hepatoblastoma or hepatocellular carcinoma. For use in the adult patient population, the American College of Radiology created the Liver Imaging Reporting and Data System (LI-RADS) to provide consistent terminology and to improve imaging interpretation. At present, no similar consensus exists to guide imaging and interpretation of pediatric patients at risk for developing a liver neoplasm or how best to evaluate a pediatric patient with a known liver neoplasm. Therefore, a new Pediatric Working Group within American College of Radiology LI-RADS was created to provide consensus for imaging recommendations and interpretation of pediatric liver neoplasms. The article was drafted based on the most up-to-date existing information as interpreted by imaging experts comprising the Pediatric LI-RADS Working Group. Guidance is provided regarding appropriate imaging modalities and protocols, as well as imaging interpretation and reporting, with the goals to improve imaging quality, to decrease image interpretation errors, to enhance communication with referrers, and to advance patient care. An expanded version of this document that includes broader background information on pediatric hepatocellular carcinoma and rationale for recommendations can be found in Appendix E1 (online).


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Hepatoblastoma/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Biópsia , Criança , Pré-Escolar , Consenso , Humanos , Lactente , Imageamento por Ressonância Magnética , Guias de Prática Clínica como Assunto , Sistemas de Informação em Radiologia/organização & administração , Tomografia Computadorizada por Raios X
12.
Radiology ; 290(2): 537-544, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422093

RESUMO

Purpose To assess the ability of convolutional neural networks (CNNs) to enable high-performance automated binary classification of chest radiographs. Materials and Methods In a retrospective study, 216 431 frontal chest radiographs obtained between 1998 and 2012 were procured, along with associated text reports and a prospective label from the attending radiologist. This data set was used to train CNNs to classify chest radiographs as normal or abnormal before evaluation on a held-out set of 533 images hand-labeled by expert radiologists. The effects of development set size, training set size, initialization strategy, and network architecture on end performance were assessed by using standard binary classification metrics; detailed error analysis, including visualization of CNN activations, was also performed. Results Average area under the receiver operating characteristic curve (AUC) was 0.96 for a CNN trained with 200 000 images. This AUC value was greater than that observed when the same model was trained with 2000 images (AUC = 0.84, P < .005) but was not significantly different from that observed when the model was trained with 20 000 images (AUC = 0.95, P > .05). Averaging the CNN output score with the binary prospective label yielded the best-performing classifier, with an AUC of 0.98 (P < .005). Analysis of specific radiographs revealed that the model was heavily influenced by clinically relevant spatial regions but did not reliably generalize beyond thoracic disease. Conclusion CNNs trained with a modestly sized collection of prospectively labeled chest radiographs achieved high diagnostic performance in the classification of chest radiographs as normal or abnormal; this function may be useful for automated prioritization of abnormal chest radiographs. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by van Ginneken in this issue.


Assuntos
Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Curva ROC , Radiologistas , Estudos Retrospectivos
13.
Radiology ; 291(3): 781-791, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30990384

RESUMO

Imaging research laboratories are rapidly creating machine learning systems that achieve expert human performance using open-source methods and tools. These artificial intelligence systems are being developed to improve medical image reconstruction, noise reduction, quality assurance, triage, segmentation, computer-aided detection, computer-aided classification, and radiogenomics. In August 2018, a meeting was held in Bethesda, Maryland, at the National Institutes of Health to discuss the current state of the art and knowledge gaps and to develop a roadmap for future research initiatives. Key research priorities include: 1, new image reconstruction methods that efficiently produce images suitable for human interpretation from source data; 2, automated image labeling and annotation methods, including information extraction from the imaging report, electronic phenotyping, and prospective structured image reporting; 3, new machine learning methods for clinical imaging data, such as tailored, pretrained model architectures, and federated machine learning methods; 4, machine learning methods that can explain the advice they provide to human users (so-called explainable artificial intelligence); and 5, validated methods for image de-identification and data sharing to facilitate wide availability of clinical imaging data sets. This research roadmap is intended to identify and prioritize these needs for academic research laboratories, funding agencies, professional societies, and industry.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Diagnóstico por Imagem , Interpretação de Imagem Assistida por Computador , Algoritmos , Humanos , Aprendizado de Máquina
14.
J Vasc Interv Radiol ; 30(2): 178-186.e5, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717948

RESUMO

PURPOSE: To examine the technical feasibility and clinical efficacy of transjugular intrahepatic portosystemic shunt (TIPS) creation in children and adolescents. MATERIALS AND METHODS: Retrospective review was performed of 59 patients (mean age 12.6 y [range, 1.5-20 y], mean weight 47.5 kg [range, 11.4-112.2 kg], mean Model for End-stage Liver Disease/Pediatric End-stage Liver Disease score 12.5 [range, 6-33]) who underwent 61 TIPS attempts at 3 tertiary children's hospitals from 2001 to 2017 for acute esophageal or gastroesophageal variceal bleeding, primary and secondary prevention of variceal bleeding, and refractory ascites. Pediatric liver disease etiologies included biliary atresia, cystic fibrosis, and ductal plate anomalies. Technical, hemodynamic, and clinical success and patency rates were reported at 1, 6, 12, and 24 months. Statistical analysis evaluated reasons for clinical failure. Kaplan-Meier analysis measured clinical success, patency, and transplant-free survival. RESULTS: Technical success was 93.4% (57/61) in 59 consecutive patients. Most common TIPS indications were treating and preventing esophageal and gastroesophageal variceal bleeding (57/59; 96.6%). Hemodynamic success was 94% (47/50). Clinical success was 80.7% (45/56). Two-year clinical success for acute variceal bleeding and ascites was 94.1% and 100%, respectively. Overall patency at 1, 6, 12, and 24 months was 98.0%, 97.8%, 94.3%, and 91.3%. Two-year transplant-free survival was 88.8%. Overall and major complication rates were 21.2% (13/61) and 8.2% (5/61), with 3 mortalities. Gradient reduction < 12 mm Hg correlated with clinical success (P < .01). CONCLUSIONS: TIPS creation in pediatric patients is technically feasible and clinically efficacious for treatment and prevention of esophageal and gastroesophageal variceal hemorrhage. High 2-year clinical success, patency, and survival rates should encourage providers to consider portosystemic shunts as a bridge to liver transplantation.


Assuntos
Ascite/cirurgia , Doença Hepática Terminal/cirurgia , Varizes Esofágicas e Gástricas/cirurgia , Hemorragia Gastrointestinal/cirurgia , Derivação Portossistêmica Transjugular Intra-Hepática , Adolescente , Fatores Etários , Ascite/diagnóstico , Ascite/etiologia , Ascite/mortalidade , Criança , Pré-Escolar , Doença Hepática Terminal/diagnóstico , Doença Hepática Terminal/etiologia , Doença Hepática Terminal/mortalidade , Varizes Esofágicas e Gástricas/diagnóstico , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/mortalidade , Estudos de Viabilidade , Feminino , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/mortalidade , Hospitais Pediátricos , Humanos , Lactente , Masculino , Derivação Portossistêmica Transjugular Intra-Hepática/efeitos adversos , Derivação Portossistêmica Transjugular Intra-Hepática/mortalidade , Recidiva , Estudos Retrospectivos , Fatores de Risco , Centros de Atenção Terciária , Fatores de Tempo , Resultado do Tratamento , Estados Unidos , Adulto Jovem
15.
AJR Am J Roentgenol ; 213(4): 782-784, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166764

RESUMO

OBJECTIVE. The purpose of this article is to describe key potential areas of application of machine learning in interventional radiology. CONCLUSION. Machine learning, although in the early stages of development within the field of interventional radiology, has great potential to influence key areas such as image analysis, clinical predictive modeling, and trainee education. A proactive approach from current interventional radiologists and trainees is needed to shape future directions for machine learning and artificial intelligence.


Assuntos
Aprendizado de Máquina , Radiologia Intervencionista , Humanos
16.
PLoS Med ; 15(11): e1002699, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30481176

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) of the knee is the preferred method for diagnosing knee injuries. However, interpretation of knee MRI is time-intensive and subject to diagnostic error and variability. An automated system for interpreting knee MRI could prioritize high-risk patients and assist clinicians in making diagnoses. Deep learning methods, in being able to automatically learn layers of features, are well suited for modeling the complex relationships between medical images and their interpretations. In this study we developed a deep learning model for detecting general abnormalities and specific diagnoses (anterior cruciate ligament [ACL] tears and meniscal tears) on knee MRI exams. We then measured the effect of providing the model's predictions to clinical experts during interpretation. METHODS AND FINDINGS: Our dataset consisted of 1,370 knee MRI exams performed at Stanford University Medical Center between January 1, 2001, and December 31, 2012 (mean age 38.0 years; 569 [41.5%] female patients). The majority vote of 3 musculoskeletal radiologists established reference standard labels on an internal validation set of 120 exams. We developed MRNet, a convolutional neural network for classifying MRI series and combined predictions from 3 series per exam using logistic regression. In detecting abnormalities, ACL tears, and meniscal tears, this model achieved area under the receiver operating characteristic curve (AUC) values of 0.937 (95% CI 0.895, 0.980), 0.965 (95% CI 0.938, 0.993), and 0.847 (95% CI 0.780, 0.914), respectively, on the internal validation set. We also obtained a public dataset of 917 exams with sagittal T1-weighted series and labels for ACL injury from Clinical Hospital Centre Rijeka, Croatia. On the external validation set of 183 exams, the MRNet trained on Stanford sagittal T2-weighted series achieved an AUC of 0.824 (95% CI 0.757, 0.892) in the detection of ACL injuries with no additional training, while an MRNet trained on the rest of the external data achieved an AUC of 0.911 (95% CI 0.864, 0.958). We additionally measured the specificity, sensitivity, and accuracy of 9 clinical experts (7 board-certified general radiologists and 2 orthopedic surgeons) on the internal validation set both with and without model assistance. Using a 2-sided Pearson's chi-squared test with adjustment for multiple comparisons, we found no significant differences between the performance of the model and that of unassisted general radiologists in detecting abnormalities. General radiologists achieved significantly higher sensitivity in detecting ACL tears (p-value = 0.002; q-value = 0.019) and significantly higher specificity in detecting meniscal tears (p-value = 0.003; q-value = 0.019). Using a 1-tailed t test on the change in performance metrics, we found that providing model predictions significantly increased clinical experts' specificity in identifying ACL tears (p-value < 0.001; q-value = 0.006). The primary limitations of our study include lack of surgical ground truth and the small size of the panel of clinical experts. CONCLUSIONS: Our deep learning model can rapidly generate accurate clinical pathology classifications of knee MRI exams from both internal and external datasets. Moreover, our results support the assertion that deep learning models can improve the performance of clinical experts during medical imaging interpretation. Further research is needed to validate the model prospectively and to determine its utility in the clinical setting.


Assuntos
Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Aprendizado Profundo , Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lesões do Menisco Tibial/diagnóstico por imagem , Adulto , Automação , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
17.
PLoS Med ; 15(11): e1002686, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30457988

RESUMO

BACKGROUND: Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologists to read the images, leading to fatigue-based diagnostic error and lack of diagnostic expertise in areas of the world where radiologists are not available. Recently, deep learning approaches have been able to achieve expert-level performance in medical image interpretation tasks, powered by large network architectures and fueled by the emergence of large labeled datasets. The purpose of this study is to investigate the performance of a deep learning algorithm on the detection of pathologies in chest radiographs compared with practicing radiologists. METHODS AND FINDINGS: We developed CheXNeXt, a convolutional neural network to concurrently detect the presence of 14 different pathologies, including pneumonia, pleural effusion, pulmonary masses, and nodules in frontal-view chest radiographs. CheXNeXt was trained and internally validated on the ChestX-ray8 dataset, with a held-out validation set consisting of 420 images, sampled to contain at least 50 cases of each of the original pathology labels. On this validation set, the majority vote of a panel of 3 board-certified cardiothoracic specialist radiologists served as reference standard. We compared CheXNeXt's discriminative performance on the validation set to the performance of 9 radiologists using the area under the receiver operating characteristic curve (AUC). The radiologists included 6 board-certified radiologists (average experience 12 years, range 4-28 years) and 3 senior radiology residents, from 3 academic institutions. We found that CheXNeXt achieved radiologist-level performance on 11 pathologies and did not achieve radiologist-level performance on 3 pathologies. The radiologists achieved statistically significantly higher AUC performance on cardiomegaly, emphysema, and hiatal hernia, with AUCs of 0.888 (95% confidence interval [CI] 0.863-0.910), 0.911 (95% CI 0.866-0.947), and 0.985 (95% CI 0.974-0.991), respectively, whereas CheXNeXt's AUCs were 0.831 (95% CI 0.790-0.870), 0.704 (95% CI 0.567-0.833), and 0.851 (95% CI 0.785-0.909), respectively. CheXNeXt performed better than radiologists in detecting atelectasis, with an AUC of 0.862 (95% CI 0.825-0.895), statistically significantly higher than radiologists' AUC of 0.808 (95% CI 0.777-0.838); there were no statistically significant differences in AUCs for the other 10 pathologies. The average time to interpret the 420 images in the validation set was substantially longer for the radiologists (240 minutes) than for CheXNeXt (1.5 minutes). The main limitations of our study are that neither CheXNeXt nor the radiologists were permitted to use patient history or review prior examinations and that evaluation was limited to a dataset from a single institution. CONCLUSIONS: In this study, we developed and validated a deep learning algorithm that classified clinically important abnormalities in chest radiographs at a performance level comparable to practicing radiologists. Once tested prospectively in clinical settings, the algorithm could have the potential to expand patient access to chest radiograph diagnostics.


Assuntos
Competência Clínica , Aprendizado Profundo , Diagnóstico por Computador/métodos , Pneumonia/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Radiologistas , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos
18.
Radiology ; 287(1): 313-322, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29095675

RESUMO

Purpose To compare the performance of a deep-learning bone age assessment model based on hand radiographs with that of expert radiologists and that of existing automated models. Materials and Methods The institutional review board approved the study. A total of 14 036 clinical hand radiographs and corresponding reports were obtained from two children's hospitals to train and validate the model. For the first test set, composed of 200 examinations, the mean of bone age estimates from the clinical report and three additional human reviewers was used as the reference standard. Overall model performance was assessed by comparing the root mean square (RMS) and mean absolute difference (MAD) between the model estimates and the reference standard bone ages. Ninety-five percent limits of agreement were calculated in a pairwise fashion for all reviewers and the model. The RMS of a second test set composed of 913 examinations from the publicly available Digital Hand Atlas was compared with published reports of an existing automated model. Results The mean difference between bone age estimates of the model and of the reviewers was 0 years, with a mean RMS and MAD of 0.63 and 0.50 years, respectively. The estimates of the model, the clinical report, and the three reviewers were within the 95% limits of agreement. RMS for the Digital Hand Atlas data set was 0.73 years, compared with 0.61 years of a previously reported model. Conclusion A deep-learning convolutional neural network model can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of existing automated models. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on January 19, 2018.


Assuntos
Determinação da Idade pelo Esqueleto/métodos , Mãos/anatomia & histologia , Aprendizado de Máquina , Redes Neurais de Computação , Radiografia/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Mãos/diagnóstico por imagem , Humanos , Lactente , Masculino , Adulto Jovem
19.
Radiology ; 286(3): 845-852, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29135365

RESUMO

Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material-enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Embolia Pulmonar/diagnóstico por imagem , Algoritmos , Humanos , Processamento de Linguagem Natural , Curva ROC , Radiografia Torácica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
20.
J Vasc Interv Radiol ; 29(11): 1527-1534.e1, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30274856

RESUMO

PURPOSE: To evaluate validity of albumin-bilirubin (ALBI) grade as a predictor of acute-on-chronic liver failure (ACLF) after transarterial chemoembolization for hepatocellular carcinoma (HCC) in patients with baseline moderate to severe liver dysfunction. MATERIALS AND METHODS: In this retrospective study, serum albumin and bilirubin levels measured before chemoembolization were used to calculate ALBI score in 123 patients treated with 187 high-risk chemoembolizations. Procedures were considered high risk if Child-Turcotte-Pugh score before chemoembolization was ≥ 8. ACLF was objectively measured using chronic liver failure-sequential organ failure assessment score at 30 and 90 d. The 30-day mortality and morbidity from new or worsening ascites and/or hepatic encephalopathy (HE) were assessed. Univariate and multivariate analyses were used to identify clinical and procedural predictors of ACLF in this high-risk population. RESULTS: ACLF occurred after 15 (8%) high-risk chemoembolizations within 30 days and an additional 9 (5%) procedures between 30 and 90 days. Overall 30-day mortality was 2.7%. New or worsened ascites and/or HE occurred after 52 (28%) procedures within 30 days. Significant prognosticators of ACLF at 90 days revealed by univariate analysis were bilirubin (P = .004), albumin (P = .007), and ALBI score (P = .002), with ALBI score remaining statistically significant on multivariate regression analysis (OR = 3.99; 95% CI, 1.70-9.40; P = .002). CONCLUSIONS: Chemoembolization for HCC can be performed safely in patients with moderate to severe liver dysfunction. ALBI score before chemoembolization provides objective prognostication for ACLF after chemoembolization in this cohort and may be used for risk stratification.


Assuntos
Insuficiência Hepática Crônica Agudizada/etiologia , Bilirrubina/sangue , Carcinoma Hepatocelular/tratamento farmacológico , Quimioembolização Terapêutica/efeitos adversos , Técnicas de Apoio para a Decisão , Testes de Função Hepática , Neoplasias Hepáticas/tratamento farmacológico , Albumina Sérica Humana/análise , Insuficiência Hepática Crônica Agudizada/sangue , Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/mortalidade , Idoso , Biomarcadores/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Quimioembolização Terapêutica/mortalidade , Feminino , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA