Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Opt Express ; 32(6): 10059-10067, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571226

RESUMO

Dissipative solitons (DSs), due to the complex interplay among dispersion, nonlinear, gain and loss, illustrate abundant nonlinear dynamics behaviors. Especially, dispersion plays an important role in the research of DS dynamics in ultrafast fiber lasers. Previous studies have mainly focused on the effect of even-order dispersion, i.e., group velocity dispersion (GVD) and fourth-order dispersion. In fact, odd-order dispersions, such as third-order dispersion (TOD), also significantly influences the dynamics of DSs. However, due to the lack of dispersion engineering tools, few experimental researches in this domain have been reported. In this work, by employing a pulse shaper in ultrafast fiber laser, an in-depth exploration of the DS dynamics influenced by TOD was conducted. With the increase of TOD value, the stable single DS undergoes a splitting into two solitons and then enters explosion state, and ultimately evolves into a chaotic state. The laser operation state is correlated to dispersion profile, which could be controlled by TOD. Here, the positive dispersion at long-wavelength side will be gradually shifted to negative dispersion by increasing the TOD, where soliton effect will drive the transitions. These findings offer valuable insights into the nonlinear dynamics of ultrafast lasers and may also foster applications involving higher-order dispersion.

2.
Opt Express ; 32(3): 4427-4435, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297644

RESUMO

Multimode fiber lasers have become a new platform for investigating nonlinear phenomena since the report on spatiotemporal mode-locking. In this work, the multimode soliton pulsation with a tunable period is achieved in a spatiotemporal mode-locked fiber laser. It demonstrates that the pulsation period drops while increasing the pump power. Moreover, it is found that different transverse modes have the same pulsation period, asynchronous pulsation evolution and different dynamical characteristics through the spatial sampling technique and the dispersive Fourier transform technique. To further verify the experimental results, we numerically investigate the influences of the gain and the loss on the pulsation properties. It is found that within a certain parameter range, the pulsation period drops and rises linearly with the increase of the gain and the loss, respectively. The obtained results contribute to understanding the formation and regulating of soliton pulsations in fiber lasers.

3.
Opt Lett ; 49(1): 57-60, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134151

RESUMO

We develop an all polarization-maintaining (PM) 920 nm Nd-doped fiber amplifier delivering a train of pulses with ∼0.53 W average power and sub-50 fs duration. The sub-50 fs pulse benefits from the pre-chirping management method that allows for over 60 nm broadening spectrum without pulse breaking in the amplification stage. By virtue of the short pulse duration, the pulse peak power can reach to ∼0.31 MW in spite of the moderate average power. These results represent a key step in developing high-peak-power pulse Nd-doped fiber laser systems at 920 nm, which will find important applications in fields such as biomedical imaging, ultrafast optical spectroscopy, and excitation of quantum-dot single photon sources.

4.
Opt Lett ; 49(6): 1575-1578, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489454

RESUMO

Spatiotemporal mode-locked (STML) fiber lasers have become a new platform for investigating nonlinear phenomena. In this work, spatiotemporal dual-periodic soliton pulsation (SDSP) is firstly observed in an STML fiber laser. It is found that in the SDSP, the long-period pulsations (LPPs) of different transverse modes are synchronous, while the short-period pulsations (SPPs) exhibit asynchronous modulations. The numerical simulation confirms the experimental results and further reveals that the proportion of transverse mode components can manipulate the periods of the LPP and SPP but does not affect the synchronous and asynchronous pulsations of different transverse modes. The obtained results bring the study of spatiotemporal dissipative soliton pulsation into the multi-period modulation stage, which helps to understand the complex spatiotemporal dynamics in STML fiber lasers and discover new dynamics in high-dimensional nonlinear systems.

5.
Opt Express ; 31(4): 7023-7031, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823947

RESUMO

Due to the fascinating features, pulsating solitons attract much attention in the field of nonlinear soliton dynamics and ultrafast lasers. So far, most of the investigations on pulsating soliton are conducted in Er-doped fiber lasers. In this work, we reported the periodic transition between two evolving pulsating soliton states in an Yb-doped fiber laser. By using the real-time measurement techniques, the spectral and temporal characteristics of this transition state were investigated. Two evolving soliton pulsation states have similar evolution process, i.e., from pulsating towards quasi-stable mode-locked states. However, the details of the two processes are different, such as the pulse energy levels, pulsating modulation depths, duration of quasi-stable mode-locked states. The transition between two evolving soliton pulsation states could be attributed to the interaction of the polarizer and the varying polarization states of the pulse inside the laser cavity. The experimental results will contribute to the further understanding of soliton pulsating dynamics in dissipative optical systems.

6.
Opt Express ; 31(11): 17354-17363, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381472

RESUMO

We report, for the first time to the best of our knowledge, a spatiotemporal mode-locked (STML) multimode fiber laser based on nonlinear amplifying loop mirror (NALM), generating dissipative soliton resonance (DSR) pulses. Due to the complex filtering characteristics caused by the inherent multimode interference filtering structure and NALM in the cavity, the STML DSR pulse has wavelength tunable function. What's more, kinds of DSR pulses are also achieved, including multiple DSR pulses, and the period doubling bifurcations of single DSR pulse and multiple DSR pulses. These results contribute to further understand the nonlinear properties of STML lasers and may shed some light on improving the performance of the multimode fiber lasers.

7.
Opt Express ; 31(2): 2902-2910, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785293

RESUMO

The self-starting performance of a figure-9 fiber laser is critically dependent on the phase shift difference between the counter-propagating beams. Herein, we propose an effective approach to dynamically control the phase shift difference in a figure-9 fiber laser by utilizing the thermal nonlinearity of graphene-decorated microfiber device. With the adjustment of the control laser power injected into the graphene-decorated microfiber, the self-starting mode-locked threshold of the figure-9 fiber laser can be attained in a flexible pump power range, i.e., from 300 mW to 390 mW. These findings demonstrated that the graphene-decorated microfiber could act as a dynamical control device of phase shift difference for improving the performance of figure-9 fiber lasers, and might also open up new possibilities for applications of microfiber photonic devices in the field of ultrafast optics.

8.
Opt Express ; 31(23): 39250-39260, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38018008

RESUMO

The Mamyshev oscillator (MO) is a promising platform to generate high-peak-power pulse with environmentally stable operation. However, rare efforts have been dedicated to unveil the dynamics from seed signal to oscillator pulse, particularly for the multi-pulse operation. Herein, we investigate the buildup dynamics of the oscillator pulse from the seed signal in a fiber MO. It is revealed that the gain competition among the successively injected seed pulses leads to higher pump power that is required to ignite the MO, hence resulting in the higher optical gain that supports buildup of multiple oscillator pulses. The multiple oscillator pulses are identified to be evolved from the multiple seed pulses. Moreover, the dispersive Fourier transform (DFT) technique is used to reveals the real-time spectral dynamics during the starting process. As a proof-of-concept demonstration, a highly intensity-modulated pulse bunch was employed as the seed signal to reduce the gain competition effect and avoid the multi-pulse starting operation. The experimental results are verified by numerical simulations. These findings would give new insights into the pulse dynamics in MO, which will be meaningful to the communities interested in ultrafast laser technologies and nonlinear optics.

9.
Opt Lett ; 48(24): 6408-6411, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099760

RESUMO

Soliton self-mode conversion is a versatile technique that allows for both wavelength changes and mode transformations. This process can be controlled by adjusting the input power, with higher power resulting in a stronger nonlinear effect that facilitates soliton self-mode conversion. Our research has demonstrated that soliton self-mode conversion is a viable method for achieving spatiotemporal coupling. This technique can be applied in optical fibers to link two pulses, resulting in distinct spatial distributions that can be controlled by adjusting the initial time intervals.

10.
Opt Lett ; 48(24): 6464-6467, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099774

RESUMO

Due to its unique geometric structure, the bidirectional ultrafast fiber laser is an excellent light source for dual-comb applications. However, sharing the same gain between the counter-propagating solitons also gives rise to complex dynamics. Herein, we report the anti-phase pulsation of counter-propagating dissipative solitons in a bidirectional fiber laser. The in-phase and anti-phase soliton pulsation can be manipulated by adjusting the intracavity birefringence. The periodic modulation of polarization-dependent gain (PDG) caused by polarization hole burning (PHB) in the gain fiber can be responsible for anti-phase pulsation of bidirectional dissipative solitons. These findings offer new, to the best of our knowledge, insights into the complex dynamics of solitons in dissipative optical systems and performance improvement of bidirectional ultrafast fiber lasers.

11.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687773

RESUMO

Real-time monitoring of volatile organic compounds (VOCs) is crucial for both industrial production and daily life. However, the non-reactive nature of VOCs and their low concentrations pose a significant challenge for developing sensors. In this study, we investigated the adsorption behaviors of typical VOCs (C2H4, C2H6, and C6H6), on pristine and Pt-decorated SnS monolayers using density functional theory (DFT) calculations. Pristine SnS monolayers have limited charge transfer and long adsorption distances to VOC molecules, resulting in VOC insensitivity. The introduction of Pt atoms promotes charge transfer, creates new energy levels, and increases the overlap of the density of states, thereby enhancing electron excitation and improving gas sensitivity. Pt-decorated SnS monolayers exhibited high sensitivities of 241,921.7%, 35.7%, and 74.3% towards C2H4, C2H6, and C6H6, respectively. These values are 142,306.9, 23.8, and 82.6 times higher than those of pristine SnS monolayers, respectively. Moreover, the moderate adsorption energies of adsorbing C2H6 and C6H6 molecules ensure that Pt-decorated SnS monolayers possess good reversibility with a short recovery time at 298 K. When heated to 498 K, C2H4 molecules desorbs from the surface of Pt-decorated SnS monolayer in 162.33 s. Our results indicate that Pt-decorated SnS monolayers could be superior candidates for sensing VOCs with high selectivity, sensitivity, and reversibility.

12.
Mol Cancer ; 21(1): 44, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148754

RESUMO

BACKGROUND: Currently, there is no clinically relevant non-invasive biomarker for early detection of esophageal squamous cell carcinoma (ESCC). Herein, we established and evaluated a circulating microRNA (miRNA)-based signature for the early detection of ESCC using a systematic genome-wide miRNA expression profiling analysis. METHODS: We performed miRNA candidate discovery using three ESCC tissue miRNA datasets (n = 108, 238, and 216) and the candidate miRNAs were confirmed in tissue specimens (n = 64) by qRT-PCR. Using a serum training cohort (n = 408), we conducted multivariate logistic regression analysis to develop an ESCC circulating miRNA signature and the signature was subsequently validated in two independent retrospective and two prospective cohorts. RESULTS: We identified eighteen initial miRNA candidates from three miRNA expression datasets (n = 108, 238, and 216) and subsequently validated their expression in ESCC tissues. We thereafter confirmed the overexpression of 8 miRNAs (miR-103, miR-106b, miR-151, miR-17, miR-181a, miR-21, miR-25, and miR-93) in serum specimens. Using a serum training cohort, we developed a circulating miRNA signature (AUC:0.83 [95%CI:0.79-0.87]) and the diagnostic performance of the miRNA signature was confirmed in two independent validation cohorts (n = 126, AUC:0.80 [95%CI:0.69-0.91]; and n = 165, AUC:0.89 [95%CI:0.83-0.94]). Finally, we demonstrated the diagnostic performance of the 8-miRNA signature in two prospective cohorts (n = 185, AUC:0.92, [95%CI:0.87-0.96]); and (n = 188, AUC:0.93, [95%CI:0.88-0.97]). Importantly, the 8-miRNA signature was superior to current clinical serological markers in discriminating early stage ESCC patients from healthy controls (p < 0.001). CONCLUSIONS: We have developed a novel and robust circulating miRNA-based signature for early detection of ESCC, which was successfully validated in multiple retrospective and prospective multinational, multicenter cohorts.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Biópsia Líquida , MicroRNAs/metabolismo , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos
13.
Opt Express ; 30(24): 43453-43463, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523042

RESUMO

We investigate the modal energy flow of the femtosecond-pulsed beam self-cleaning on LP11 mode with the influence of different factors such as the initial fraction of LP11 mode, initial peak power, distribution of high-order modes and the numerical aperture of the fiber. It is interesting that there is a critical value of the initial peak power, Pcr, which is the watershed, not only in the quantitatively dominant transverse mode converting from LP11 mode to LP01 mode, but also in the behavior of HOMs of the transition from Attractor to chaos. Our simulation results may provide a novel perspective to understanding the beam self-cleaning on LP11 mode.

14.
Opt Express ; 30(12): 22066-22073, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224913

RESUMO

The evolution of ultrafast laser technology hinges partially on the understanding of the soliton nonlinear dynamics. Recently, the concept of pure-quartic soliton (PQS) that arises from the balance of pure negative fourth-order dispersion (FOD) and nonlinearity was proposed to generate high peak power pulse. Herein, we investigate the generation of dissipative pure-quartic soliton (DPQS) in a fiber laser, which is balanced among the positive FOD, nonlinearity, gain and loss. The DPQS features the shape-preserving propagation despite the asymmetrical temporal profile at higher pulse energy. It is found that the asymmetrical temporal profile of DPQS is resulted from the mismatching of the phase shift profiles caused by self-phase modulation and FOD. Moreover, it is demonstrated that the DPQS possesses a higher energy-scaling ability compared to conventional dissipative soliton, owing to the nonlinear relationship between the pulse energy and pulse duration. These findings demonstrated that the employment of positive FOD could be a promising way for manipulation of optical pulse as well as the improvement of laser performance.

15.
Opt Express ; 30(12): 22143-22152, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224920

RESUMO

Derived from oceanography, nowadays the investigation of rogue waves (RWs) has been widely spread in various fields, particularly in nonlinear optics. Passively mode-locked fiber laser has been regarded as one of the excellent platforms to investigate the dissipative RWs (DRWs). Here, we report the observation of DRW generation induced by single and multi-soliton explosions in a passively mode-locked fiber laser. It was demonstrated that through the gain-mediated soliton interactions, one soliton could erupt because of the explosion of another soliton in the laser cavity. Meanwhile, the high-amplitude waves, which fulfill the DRWs criteria, could be detected in the multi-soliton explosion states. The DRWs were identified by characterizing the peak intensity statistics of the time-stretched soliton profiles. Particularly, it was found that the ratio between the highest recorded amplitudes and significant wave heights (SWHs) of DRWs induced by multi-soliton explosions is higher than that by single-soliton explosion case. Our findings will further contribute to the understanding of the physical mechanisms of DRWs in the soliton explosion regime.

16.
Opt Express ; 30(18): 32347-32354, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242298

RESUMO

The evolution of multiphoton microscopy is critically dependent on the development of ultrafast laser technologies. The ultrashort pulse laser source at 1.7 µm waveband is attractive for in-depth three-photon imaging owing to the reduced scattering and absorption effects in biological tissues. Herein, we report on a 1.7 µm passively mode-locked figure-9 Tm-doped fiber laser. The nonreciprocal phase shifter that consists of two quarter-wave plates and a Faraday rotator introduces phase bias between the counter-propagating beams in the nonlinear amplifying loop mirror. The cavity dispersion is compensated to be slightly positive, enabling the proposed 1.7 µm ultrafast fiber laser to deliver the dissipative soliton with a 3-dB bandwidth of 20 nm. Moreover, the mode-locked spectral bandwidth could be flexibly tuned with different phase biases by rotating the wave plates. The demonstration of figure-9 Tm-doped ultrafast fiber laser would pave the way to develop the robust 1.7 µm ultrashort pulse laser sources, which could find important application for three-photon deep-tissue imaging.

17.
Opt Lett ; 47(7): 1750-1753, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363726

RESUMO

We numerically investigate the pulsating dynamics of pure-quartic solitons (PQSs) in a passively mode-locked fiber laser. The bifurcation diagrams show that the PQS can alternate between the stable single soliton and pulsating regimes multiple times before transiting into the chaotic state. This multi-alternation behavior can be attributed to energy redistribution across the central part and the oscillating tails of the PQS, which is caused by an imperfect counterbalance between self-phase modulation (SPM)-induced and fourth-order dispersion (FOD)-induced phase shifts. Soliton creeping behavior can be observed during the pulsating process, accompanied by periodic asymmetric temporal profiles and central wavelength shifts of the PQS. These findings give new insights into the dynamics of PQSs in fiber lasers.

18.
Opt Lett ; 47(15): 3848-3851, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913330

RESUMO

We report a narrow bandwidth spatiotemporal mode-locked (STML) ytterbium-doped fiber laser, based on a homemade carbon nanotube/polyvinyl alcohol composite film and the multimode interference filtering effect. The wavelength-tunable narrow bandwidth STML operations combined with different pulse states are achieved, including single pulse, multiple pulses, and harmonics. The 3-dB bandwidth at the single-pulse state is 103 pm, while at the harmonic state, it is as narrow as 26 pm. To give an insight into the generation of the narrow bandwidth STML pulses, numerical simulations are performed. Such a laser has a wide range of potential applications in fields of optical communication and optical measurement, as well as provides a favorable platform for studying the evolution dynamics of multimode solitons.

19.
Opt Express ; 29(20): 32682-32690, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615333

RESUMO

Multimode fibers (MMFs) support abundant spatial modes and involve rich spatiotemporal dynamics, yielding many promising applications. Here, we investigate the influences of the number and initial energy of high-order modes (HOMs) on the energy flow from the intermediate modes (IMs) to the fundamental mode (FM) and HOMs. It is quite surprising that random distribution of high-order modes evolves to a stationary one, indicating the asymptotic behavior of orbits in the same attraction domain. By employing the Lyapunov exponent, we prove that the threshold of the HOMs-attractor is consistent with the transition point of the energy flow which indicates the HOMs-attracotr acts as a "valve" in the modal energy flow. Our results provide a new perspective to explore the nonlinear phenomena in MMFs, such as Kerr self-cleaning, and may pave the way to some potential applications, such as secure communications in MMFs.

20.
Opt Express ; 29(7): 11353-11360, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820249

RESUMO

In this paper, we investigated the geometric parametric instability (GPI) in graded-index multimode fibers through the multimode generalized nonlinear Schrödinger equation. Our results clearly and intuitively indicate that the generations of GPI sidebands are nearly synchronous in the spectrums of all modes, and the shapes of these spectrums are nearly the same. The numerical results show that the energies of the GPI sidebands come from the pump sideband, and these sidebands are carried by similar spatial beam profiles due to the similar modal components. We also found that the large modal dispersion has an influence for the symmetry of these GPI sidebands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA