Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14364, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225803

RESUMO

Plant-soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non-woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non-woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non-woody species, likely due to increased mutualistic microbes relative to soil-borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant-soil microbe interactions.


Assuntos
Plantas , Solo , Microbiologia do Solo , Simbiose , Retroalimentação
2.
Aquac Nutr ; 2023: 3321734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174087

RESUMO

The purpose of this trial was to study the positive effects of bile acids (BAs) on growth performance and intestinal health of rice field eel fed with high-lipid diets (HLDs). Rice field eels (initial weight 17.00 ± 0.10 g) were divided into four groups, each group containing four repetitions and feeding with different isonitrogenous diet: control diet containing 7% lipid content, HLDs containing the lipid content increased to 13%, HLDs supplementing with 0.025% BAs and 0.05% BAs, respectively. After 8 weeks, compared control group, the fish fed HLDs had no significant effect on weight gain rate and specific growth rate (P > 0.05), but increased the lipid deposition in tissues and intestinal lipase activity, and damaged to intestinal oxidative stress, inflammatory response, physical barrier, and structural integrity (P < 0.05). Dietary BAs significantly increased weight gain rate and specific growth rate in fish fed with HL diets (P < 0.05) and reduced feed conversation rate (P < 0.05). Further, the eels fed with BAs reduced the total lipid content in liver, muscle, and whole body (P < 0.05). Dietary BAs decreased the activity of intestinal lipase (P < 0.05). Meanwhile, BAs supplemented in HLDs improved intestinal antioxidant capacity through increasing the activities of T-SOD (total superoxide dismutase), GSH-PX (glutathione peroxidase), CAT (catalase), T-AOC (total antioxidant capacity), whereas reducing MDA (malondialdehyde) content (P < 0.05). Moreover, dietary BAs regulated the mRNA expression related to inflammatory response, oxidative stress, and physical barrier in intestine, such as tnf-α, il-8, tlr-8, il-10, nrf2, keap1, claudin12, and claudin15 (P < 0.05). Dietary BAs supplementation also enhanced the intestinal structural integrity characterized by increased fold height and lamina propria width (P < 0.05). This study showed that dietary BAs supplemented in HLDs (13% lipid) could increase the growth performance of rice field eel, reduce lipid deposition in tissues and whole body, and enhance intestinal health.

3.
Neural Netw ; 172: 106105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232428

RESUMO

In this article, an adaptive optimal consensus control problem is studied for multiagent systems in the strict-feedback structure with intermittent constraints (the constraints appear intermittently). More specifically, by designing a novel switch-like function and an improved coordinate transformation, the constrained states are converted into unconstrained states, and the problem of intermittent constraints is resolved without requiring "feasibility conditions". In addition, using the composite learning algorithm and neural networks to construct the identifier, a simplified identifier-actor-critic-based reinforcement learning strategy is proposed to obtain the approximate optimal controller under the framework of backstepping. Meanwhile, with the aid of the nonlinear dynamic surface control technique, the issue of "explosion of complexity" in backstepping is removed, and the requirements for filter parameters are loosened. Based on Lyapunov stability theory, it is demonstrated that all signals in the closed-loop system are bounded. Finally, two simulation examples are used to verify the effectiveness of the proposed method.


Assuntos
Algoritmos , Redes Neurais de Computação , Consenso , Simulação por Computador , Dinâmica não Linear
4.
Zhen Ci Yan Jiu ; 49(4): 358-366, 2024 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38649203

RESUMO

OBJECTIVES: To analyze the effects of electroacupuncture (EA) at "Fenglong" (ST40) and "Zusanli" (ST36) of different intensities and durations on rats with non-alcoholic fatty liver disease (NAFLD) based on the protein kinase R-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) signaling pathway, so as to explore its mechanism underlying improvement of NAFLD. METHODS: SD rats were randomly divided into normal diet group, high-fat model group, sham EA group, strong stimulation EA (SEA) group, and weak stimulation EA (WEA) group, with 15 rats in each group. Each group was further divided into 2, 3, and 4-week subgroups. NAFLD rat model was established by feeding a high-fat diet. After successful modeling, rats in the SEA and WEA groups received EA at bilateral ST40 and ST36 with dense and sparse waves (4 Hz/20 Hz) at current intensities of 4 mA (SEA group) and 2 mA (WEA group), lasting for 20 minutes, once a day, 5 days a week with 2 days of rest. The sham EA group only had the EA apparatus connected without electricity. Different duration subgroups were intervened for 2, 3, and 4 weeks. After the intervention, the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rats were detected by an automatic biochemical analyzer;liver morphological changes were observed by Oil Red O staining;real-time fluorescence quantitative PCR and Western blot were used to detect the expression of PERK, ATF4, and CHOP mRNAs and proteins in the rat liver tissue. RESULTS: In the high-fat model group, there was a significant accumulation of red lipid droplets in the liver cells, which was reduced significantly in the SEA group at the 4th week. Compared with the normal diet group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.01) in the high-fat model group . Compared with the high-fat model group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, CHOP mRNAs and proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups. Compared with the sham EA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were decreased (P<0.01, P<0.05) in the SEA and WEA groups, the expression of PERK, ATF4, and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at the 2nd, 3rd, and 4th week, the expression of PERK and CHOP proteins at the 2nd, 3rd, 4th week and ATF4 protein at 2nd week in the liver tissue were decreased (P<0.01, P<0.05) in the WEA group. Compared with the SEA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.05, P<0.01) in the WEA group. Compared with the 2-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and PERK proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups at 3rd and 4th week, the expression of ATF4 proteins in the liver tissue was decreased (P<0.01) in the SEA group at 3rd and 4th week, and the expression of CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at 4th week and in the WEA group at 3rd and 4th week. Compared with the 3-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were significantly decreased (P<0.05, P<0.01) in the SEA and WEA groups at 4th week, the expression of PERK and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA and WEA groups at 4th week, and the expression of ATF4 protein in the liver tissue was decreased (P<0.05) in the SEA group at 4th week. CONCLUSIONS: EA at ST40 and ST36 can significantly improve liver function in NAFLD rats, and its mechanism of action may involve inhibiting PERK expression thereby targeting the downstream ATF4/CHOP signaling pathway to suppress endoplasmic reticulum stress, exerting a liver protective effect;the optimal effect was observed with EA intensity of 4 mA for 4 weeks.


Assuntos
Fator 4 Ativador da Transcrição , Pontos de Acupuntura , Eletroacupuntura , Fígado , Hepatopatia Gordurosa não Alcoólica , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição CHOP , eIF-2 Quinase , Animais , Ratos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética
5.
Sci China Life Sci ; 67(4): 817-828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217639

RESUMO

The Convention on Biological Diversity seeks to conserve at least 30% of global land and water areas by 2030, which is a challenge but also an opportunity to better preserve biodiversity, including flowering plants (angiosperms). Herein, we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species. Using this database, we constructed biodiversity-environment models to predict global patterns of taxonomic, phylogenetic, and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets. We further evaluated the current protection status of the biodiversity centers of these diversity facets. Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities. Idiosyncratic centers of functional diversity, particularly of herbaceous species, were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets. Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms (woody vs. herbaceous), thus providing directions for guiding the future conservation of global plant diversity.


Assuntos
Magnoliopsida , Filogenia , Biodiversidade , Plantas , Ecossistema , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA