Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(13): e2025606119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312361

RESUMO

SignificanceThe permanent disappearance of mass-independent sulfur isotope fractionation (S-MIF) from the sedimentary record has become a widely accepted proxy for atmospheric oxygenation. This framework, however, neglects inheritance from oxidative weathering of pre-existing S-MIF-bearing sedimentary sulfide minerals (i.e., crustal memory), which has recently been invoked to explain apparent discrepancies within the sulfur isotope record. Herein, we demonstrate that such a crustal memory effect does not confound the Carletonville S-isotope record; rather, the pronounced Δ33S values identified within the Rooihoogte Formation represent the youngest known unequivocal oxygen-free photochemical products. Previously observed 33S-enrichments within the succeeding Timeball Hill Formation, however, contrasts with our record, revealing kilometer-scale heterogeneities that highlight significant uncertainties in our understanding of the dynamics of Earth's oxygenation.

2.
Proc Natl Acad Sci U S A ; 117(25): 14005-14014, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513736

RESUMO

Paleozoic and Precambrian sedimentary successions frequently contain massive dolomicrite [CaMg(CO3)2] units despite kinetic inhibitions to nucleation and precipitation of dolomite at Earth surface temperatures (<60 °C). This paradoxical observation is known as the "dolomite problem." Accordingly, the genesis of these dolostones is usually attributed to burial-hydrothermal dolomitization of primary limestones (CaCO3) at temperatures of >100 °C, thus raising doubt about the validity of these deposits as archives of Earth surface environments. We present a high-resolution, >63-My-long clumped-isotope temperature (TΔ47) record of shallow-marine dolomicrites from two drillcores of the Ediacaran (635 to 541 Ma) Doushantuo Formation in South China. Our T∆47 record indicates that a majority (87%) of these dolostones formed at temperatures of <100 °C. When considering the regional thermal history, modeling of the influence of solid-state reordering on our TΔ47 record further suggests that most of the studied dolostones formed at temperatures of <60 °C, providing direct evidence of a low-temperature origin of these dolostones. Furthermore, calculated δ18O values of diagenetic fluids, rare earth element plus yttrium compositions, and petrographic observations of these dolostones are consistent with an early diagenetic origin in a rock-buffered environment. We thus propose that a precursor precipitate from seawater was subsequently dolomitized during early diagenesis in a near-surface setting to produce the large volume of dolostones in the Doushantuo Formation. Our findings suggest that the preponderance of dolomite in Paleozoic and Precambrian deposits likely reflects oceanic conditions specific to those eras and that dolostones can be faithful recorders of environmental conditions in the early oceans.

4.
Natl Sci Rev ; 11(1): nwad291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116088

RESUMO

The invisible microbes are the main components of the biosphere and proliferated in many mass extinctions of animals. Whether the proliferation of microbes was an accomplice or a savior of the mass extinction remains uncertain. Future work has to quantify the dual effects of microbes on the environment.

5.
Nat Commun ; 9(1): 978, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515129

RESUMO

The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.


Assuntos
Fixação de Nitrogênio , Nitrogênio/química , Oxigênio/química , Ecossistema , Sedimentos Geológicos/química , História Antiga , Ciclo do Nitrogênio , Paleontologia/história , Água do Mar/química , África do Sul
6.
Science ; 361(6398): 174-177, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853552

RESUMO

Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.


Assuntos
Atmosfera/química , Evolução Biológica , Oxigênio/análise , Plâncton , Cálcio/análise , Carbonatos/análise , Iodo/análise , Oceanos e Mares
8.
Sci Adv ; 2(5): e1600134, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386544

RESUMO

Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly-within 1 to 10 million years-and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, "Snowball Earth" glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.


Assuntos
Atmosfera , Planeta Terra , Oxigênio , Atmosfera/análise , Atmosfera/química , Evolução Planetária , História Antiga , Ferro , Oxigênio/análise , Sulfetos
9.
Sci Rep ; 5: 17097, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597559

RESUMO

Oxygenation has widely been viewed as a major factor driving the emergence and diversification of animals. However, links between early animal evolution and shifts in surface oxygen levels have largely been limited to extrapolation of paleoredox conditions reconstructed from unfossiliferous strata to settings in which contemporaneous fossils were preserved. Herein, we present a multi-proxy paleoredox study of late Ediacaran (ca. 560-551 Ma) shales hosting the Miaohe Konservat-Lagerstätte of South China and, for comparison, equivalent non-fossil-bearing shales at adjacent sections. For the fossiliferous strata at Miaohe there is geochemical evidence for anoxic conditions, but paleontological evidence for at least episodically oxic conditions. An oxygen-stressed environment is consistent with the low diversity and simple morphology of Miaohe Biota macrofossils. However, there is no evidence for euxinic (anoxic and sulphidic) conditions for the fossiliferous strata at Miaohe, in contrast to adjacent unfossiliferous sections. Our results indicate that Ediacaran marine redox chemistry was highly heterogeneous, even at the kilometre-scale. Therefore, our study provides direct-rather than inferred-evidence that anoxia played a role in shaping a landmark Ediacaran ecosystem. If the anoxic conditions characteristic of the studied sections were widespread in the late Neoproterozoic, environmental stress would have hindered the development of complex ecosystems.


Assuntos
Organismos Aquáticos/química , Animais , Evolução Biológica , Ecossistema , Fósseis , Sedimentos Geológicos/análise , Ferro/análise , Ferro/química , Oxirredução , Oxigênio/análise , Oxigênio/química , Paleontologia , Água do Mar , Sulfetos/análise , Sulfetos/química , Oligoelementos/análise , Oligoelementos/química
10.
Science ; 334(6063): 1694-6, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22144465

RESUMO

The stable isotope record of marine carbon indicates that the Proterozoic Eon began and ended with extreme fluctuations in the carbon cycle. In both the Paleoproterozoic [2500 to 1600 million years ago (Ma)] and Neoproterozoic (1000 to 542 Ma), extended intervals of anomalously high carbon isotope ratios (δ(13)C) indicate high rates of organic matter burial and release of oxygen to the atmosphere; in the Neoproterozoic, the high δ(13)C interval was punctuated by abrupt swings to low δ(13)C, indicating massive oxidation of organic matter. We report a Paleoproterozoic negative δ(13)C excursion that is similar in magnitude and apparent duration to the Neoproterozoic anomaly. This Shunga-Francevillian anomaly may reflect intense oxidative weathering of rocks as the result of the initial establishment of an oxygen-rich atmosphere.


Assuntos
Atmosfera , Isótopos de Carbono/análise , Planeta Terra , Sedimentos Geológicos/química , Oxigênio , Ciclo do Carbono , Carbonatos , Isótopos de Nitrogênio/análise , Fenômenos de Química Orgânica , Oxirredução , Federação Russa , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA