Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105735, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336298

RESUMO

One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.


Assuntos
Diabetes Mellitus Experimental , Átrios do Coração , Proteínas Musculares , NF-kappa B , Espécies Reativas de Oxigênio , Proteínas Ligases SKP Culina F-Box , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Animais , Camundongos , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Linhagem Celular , Imunoprecipitação da Cromatina , Curcumina/farmacologia , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Hiperglicemia/genética , Hiperglicemia/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocárdio , Miócitos Cardíacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
2.
Cell Mol Biol Lett ; 27(1): 46, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690719

RESUMO

The submandibular gland (SMG) and the sublingual gland (SLG) are two of the three major salivary glands in mammals. In mice, they are adjacent to each other and open into the oral cavity, producing saliva to lubricate the mouth and aid in food digestion. Though salivary gland dysfunction accompanied with fibrosis and metabolic disturbance is common in clinic, in-depth mechanistic research is lacking. Currently, research on how to rescue salivary function is challenging, as it must resort to using terminally differentiated acinar cells or precursor acinar cells with unknown differentiation. In this study, we established reversely immortalized mouse primary SMG cells (iSMGCs) and SLG cells (iSLGCs) on the first postnatal day (P0). The iSMGCs and iSLGCs grew well, exhibited many salivary gland characteristics, and retained the metabolism-related genes derived from the original tissue as demonstrated using transcriptome sequencing (RNA-seq) analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two cell lines, which overlapped with those of the SMG and SLG, were enriched in cysteine and methionine metabolism. Furthermore, we investigated the role of bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), on metabolic and fibrotic functions in the SMG and SLG. We demonstrated that iSMGCs and iSLGCs presented promising adipogenic and fibrotic responses upon BMP9/Gdf2 stimulation. Thus, our findings indicate that iSMGCs and iSLGCs faithfully reproduce characteristics of SMG and SLG cells and present a promising prospect for use in future study of salivary gland metabolism and fibrosis upon BMP9/Gdf2 stimulation.


Assuntos
Fator 2 de Diferenciação de Crescimento , Glândula Sublingual , Animais , Linhagem Celular , Fibrose , Fator 2 de Diferenciação de Crescimento/metabolismo , Mamíferos , Camundongos , Glândulas Salivares/metabolismo , Glândula Sublingual/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142516

RESUMO

The objectives of this study were to investigate the effects of a novel method using flavonoids to inhibit Streptococcus mutans (S. mutans), Candida albicans (C. albicans) and dual-species biofilms and to protect enamel hardness in a biofilm-based caries model for the first time. Several flavonoids, including baicalein, naringenin and catechin, were tested. Gold-standard chlorhexidine (CHX) and untreated (UC) groups served as controls. Optimal concentrations were determined by cytotoxicity assay. Biofilm MTT, colony-forming-units (CFUs), biofilm biomass, lactic acid and polysaccharide production were evaluated. Real-time-polymerase-chain reaction (qRT-PCR) was used to determine gene expressions in biofilms. Demineralization of human enamel was induced via S. mutans-C. albicans biofilms, and enamel hardness was measured. Compared to CHX and UC groups, the baicalein group achieved the greatest reduction in S. mutans, C. albicans and S. mutans-C. albicans biofilms, yielding the least metabolic activity, polysaccharide synthesis and lactic acid production (p < 0.05). The biofilm CFU was decreased in baicalein group by 5 logs, 4 logs, 5 logs, for S. mutans, C. albicans and S. mutans-C. albicans biofilms, respectively, compared to UC group. When tested in a S. mutans-C. albicans in vitro caries model, the baicalein group substantially reduced enamel demineralization under biofilms, yielding an enamel hardness that was 2.75 times greater than that of UC group. Hence, the novel baicalein method is promising to inhibit dental caries by reducing biofilm formation and protecting enamel hardness.


Assuntos
Catequina , Cárie Dentária , Biofilmes , Candida albicans , Catequina/farmacologia , Clorexidina/farmacologia , Cárie Dentária/prevenção & controle , Esmalte Dentário , Flavanonas , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Dureza , Humanos , Ácido Láctico/farmacologia , Polissacarídeos/farmacologia , Streptococcus mutans
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(3): 444-451, 2022 May.
Artigo em Zh | MEDLINE | ID: mdl-35642153

RESUMO

Objective: To investigate the regulatory effect of all-trans retinoic acid (ATRA) on the expression interleukin-1ß (IL-1ß) in macrophages and the mechanisms involved. Methods: Macrophages were treated with 1 µmol/L ATRA for 24 h before RNA-Sequence. Differentially expressed genes (DEGs) were screened out and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, gene ontology (GO) functional analysis, and protein-protein interaction networks (PPI) analysis. After treatment with different doses of ATRA for 24 h, the expression of IL-1ß was examined with qRT-PCR and Western blot. The activation of NF-κB signaling and caspase-1 was observed by Western blot and immunofluorescence staining. Results: Compared with the blank control group, a total of 71 DEGs of macrophages were upregulated in the ATRA treatment group. KEGG analysis showed that the up-regulated DEGs were involved in IL-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, etc. GO analysis indicated that the up-regulated DEGs were involved in the biological processes of the production of IL-1ß, response to lipopolysaccharide, etc. PPI analysis revealed that inflammatory cytokines, adhesion molecules, and chemokines were the key genes that ATRA acted on. In vitro experiments showed that ATRA promoted IL-1ß expression in macrophages in a concentration-dependent manner. The expression of p-NF-κB, NF-κB, and caspase-1 were significantly increased by ATRA compared with those of the control group ( P<0.05), and p-NF-κB translocated to the cell nucleus in the ATRA group. Conclusion: ATRA may promote the expression of IL-1ß by activating NF-κB signaling and caspase-1 in macrophages, this study may provide evidence for the immune regulatory function of ATRA on macrophages.


Assuntos
Macrófagos , NF-kappa B , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Tretinoína/farmacologia
5.
J Cell Mol Med ; 25(5): 2666-2678, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605035

RESUMO

Teeth arise from the tooth germ through sequential and reciprocal interactions between immature epithelium and mesenchyme during development. However, the detailed mechanism underlying tooth development from tooth germ mesenchymal cells (TGMCs) remains to be fully understood. Here, we investigate the role of Wnt/ß-catenin signalling in BMP9-induced osteogenic/odontogenic differentiation of TGMCs. We first established the reversibly immortalized TGMCs (iTGMCs) derived from young mouse mandibular molar tooth germs using a retroviral vector expressing SV40 T antigen flanked with the FRT sites. We demonstrated that BMP9 effectively induced expression of osteogenic markers alkaline phosphatase, collagen A1 and osteocalcin in iTGMCs, as well as in vitro matrix mineralization, which could be remarkably blunted by knocking down ß-catenin expression. In vivo implantation assay revealed that while BMP9-stimulated iTGMCs induced robust formation of ectopic bone, knocking down ß-catenin expression in iTGMCs remarkably diminished BMP9-initiated osteogenic/odontogenic differentiation potential of these cells. Taken together, these discoveries strongly demonstrate that reversibly immortalized iTGMCs retained osteogenic/odontogenic ability upon BMP9 stimulation, but this process required the participation of canonical Wnt signalling both in vitro and in vivo. Therefore, BMP9 has a potential to be applied as an efficacious bio-factor in osteo/odontogenic regeneration and tooth engineering. Furthermore, the iTGMCs may serve as an important resource for translational studies in tooth tissue engineering.


Assuntos
Fator 2 de Diferenciação de Crescimento/genética , Células-Tronco Mesenquimais/metabolismo , Odontogênese/genética , Osteogênese/genética , Germe de Dente/citologia , Via de Sinalização Wnt , Animais , Diferenciação Celular , Linhagem Celular , Transformação Celular Neoplásica , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Fator 2 de Diferenciação de Crescimento/metabolismo , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos
6.
J Biochem Mol Toxicol ; 34(5): e22473, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048404

RESUMO

γ-Aminobutyrate (GABA) is commonly used as a food supplement and a health care product by young females, due to its positive roles in relieving stress, alleviating anxiety, and improving sleep. However, its recommended daily dose in different products varies widely. Besides, it is unknown whether, and how, GABA consumption during early pregnancy influences pregnancy establishment. In this study, we found that when pregnant mice were treated with a high (12.5 mg/g) dose of GABA (orally) during preimplantation, there was a reduction in the number of implantation sites on day 5 of pregnancy. Also, among these unimplanted embryos, most exhibited morphological degeneration and developmental retardation, and only a few of them developed into blastocysts but could not implant into the uterus. Moreover, the expression of uterine receptivity-related factors-LIF, E-cadherin, and HOXA10-were all downregulated, while the number of uterine glands was reduced in the high GABA dose group. Finally, in vitro results demonstrated that GABA (ranging from 10 to 50 µg/µL) markedly inhibited preimplantation embryo development in a dose-response manner. However, this inhibitory effect was not observed when the embryos were pretreated with 40 µΜ 2-hydroxysaclofen, a GABAB antagonist, indicating that GABA exerts its inhibitory effects via its B-type receptor. Our results suggest that exposure to certain GABA concentrations, during early pregnancy, can impair preimplantation embryo development via its B-type receptor, and endometrial receptivity, which greatly disturbs early embryo implantation in mice. These findings could raise concerns about GABA consumption during the early stages of pregnancy.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Ácido gama-Aminobutírico/administração & dosagem , Administração Oral , Animais , Baclofeno/análogos & derivados , Baclofeno/farmacologia , Caderinas/metabolismo , Relação Dose-Resposta a Droga , Endométrio/metabolismo , Feminino , Antagonistas de Receptores de GABA-B/farmacologia , Proteínas Homeobox A10/metabolismo , Fator Inibidor de Leucemia/metabolismo , Camundongos , Gravidez , Transdução de Sinais/efeitos dos fármacos
7.
Lab Invest ; 99(1): 58-71, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353129

RESUMO

Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into multiple lineages including osteoblastic lineage. Osteogenic differentiation of MSCs is a cascade that recapitulates most, if not all, of the molecular events occurring during embryonic skeletal development, which is regulated by numerous signaling pathways including bone morphogenetic proteins (BMPs). Through a comprehensive analysis of the osteogenic activity, we previously demonstrated that BMP9 is the most potent BMP for inducing bone formation from MSCs both in vitro and in vivo. However, as one of the least studied BMPs, the essential mediators of BMP9-induced osteogenic signaling remain elusive. Here we show that BMP9-induced osteogenic signaling in MSCs requires intact Notch signaling. While the expression of Notch receptors and ligands are readily detectable in MSCs, Notch inhibitor and dominant-negative Notch1 effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic bone formation in vivo. Genetic disruption of Notch pathway severely impairs BMP9-induced osteogenic differentiation and ectopic bone formation from MSCs. Furthermore, while BMP9-induced expression of early-responsive genes is not affected by defective Notch signaling, BMP9 upregulates the expression of Notch receptors and ligands at the intermediate stage of osteogenic differentiation. Taken together, these results demonstrate that Notch signaling may play an essential role in coordinating BMP9-induced osteogenic differentiation of MSCs.


Assuntos
Fatores de Diferenciação de Crescimento/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Receptores Notch/metabolismo , Diferenciação Celular , Fator 2 de Diferenciação de Crescimento , Células HEK293 , Humanos , Transdução de Sinais , Regulação para Cima
8.
J Cell Biochem ; 119(11): 8872-8886, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076626

RESUMO

Human mesenchymal stem cells (MSCs) are a heterogeneous subset of nonhematopoietic multipotent stromal stem cells and can differentiate into mesodermal lineage, such as adipocytes, osteocytes, and chondrocytes, as well as ectodermal and endodermal lineages. Human umbilical cord (UC) is one of the most promising sources of MSCs. However, the molecular and cellular characteristics of UC-derived MSCs (UC-MSCs) require extensive investigations, which are hampered by the limited lifespan and the diminished potency over passages. Here, we used the piggyBac transposon-based simian virus 40 T antigen (SV40T) immortalization system and effectively immortalized UC-MSCs, yielding the iUC-MSCs. A vast majority of the immortalized lines are positive for MSC markers but not for hematopoietic markers. The immortalization phenotype of the iUC-MSCs can be effectively reversed by flippase recombinase-induced the removal of SV40T antigen. While possessing long-term proliferation capability, the iUC-MSCs are not tumorigenic in vivo. Upon bone morphogenetic protein 9 (BMP9) stimulation, the iUC-MSC cells effectively differentiate into osteogenic, chondrogenic, and adipogenic lineages both in vitro and in vivo, which is indistinguishable from that of primary UC-MSCs, indicating that the immortalized UC-MSCs possess the characteristics similar to that of their primary counterparts and retain trilineage differentiation potential upon BMP9 stimulation. Therefore, the engineered iUC-MSCs should be a valuable alternative cell source for studying UC-MSC biology and their potential utilities in immunotherapies and regenerative medicine.


Assuntos
Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Fator 2 de Diferenciação de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Cordão Umbilical/citologia , Análise de Variância , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Técnicas de Cultura de Células/métodos , Proliferação de Células , Condrogênese/fisiologia , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Recém-Nascido , Camundongos Nus , Transposon Resolvases/metabolismo
9.
Cell Physiol Biochem ; 41(5): 1725-1735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28365680

RESUMO

BACKGROUND/AIMS: Periapical periodontitis is a common oral disease caused by bacterial invasion of the tooth pulp, which usually leads to local release of pro-inflammatory cytokines and osteolytic lesion. This study is intended to examine the effect of TNF-α on BMP9-induced osteogenic differentiation of the stem cells of dental apical papilla (SCAPs). METHODS: Rat model of periapical periodontitis was established. TNF-α expression was assessed. Osteogenic markers and ectopic bone formation in iSCAPs were analyzed upon BMP9 and TNF-α treatment. RESULTS: Periapical periodontitis was successfully established in rat immature permanent teeth with periapical lesions, in which TNF-α was shown to release during the inflammatory phase. BMP9-induced alkaline phosphatase activity, the expression of osteocalcin and osteopontin, and matrix mineralization in iSCAPs were inhibited by TNF-α in a dose-dependent fashion, although increased AdBMP9 partially overcame TNF-α inhibition. Furthermore, high concentration of TNF-α effectively inhibited BMP9-induced ectopic bone formation in vivo. CONCLUSION: TNF-α plays an important role in periapical bone defect during the inflammatory phase and inhibits BMP9-induced osteoblastic differentiation of iSCAPs, which can be partially reversed by high levels of BMP9. Therefore, BMP9 may be further explored as a potent osteogenic factor to improve osteo/odontogenic differentiation in tooth regeneration in chronic inflammation conditions.


Assuntos
Diferenciação Celular , Fator 2 de Diferenciação de Crescimento/metabolismo , Odontoblastos/metabolismo , Periodontite Periapical/metabolismo , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfatase Alcalina/biossíntese , Animais , Indução Enzimática , Masculino , Odontoblastos/patologia , Periodontite Periapical/patologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/patologia
10.
Front Psychol ; 15: 1411085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035093

RESUMO

Introduction: Professional psychological qualities are crucial for individuals' career development and overall well-being, especially in clinical medical professions. Medical students often face significant work, academic, and doctor-patient communication pressures, which can challenge their mental and emotional health. Measuring and understanding the relationship between medical students' professional psychological qualities and their mental health is of significant practical importance. Methods: This study developed a comprehensive professional psychological qualities scale through a series of qualitative and quantitative studies, consisting of three main components and thirteen secondary dimensions. The scale's reliability was assessed using Cronbach's α coefficients. In Study 2, the scale was administered to 972 medical students to explore their anxiety and depression levels. A simple mediation analysis was conducted to investigate the relationship between professional psychological qualities, anxiety, and depression. Results: The professional psychological qualities scale demonstrated satisfactory reliability, with a total scale α coefficient of 0.947 and subscale α coefficients ranging from 0.895 to 0.933. The mediation analysis revealed that medical students' professional psychological qualities directly negatively impact depression levels and indirectly positively influence them via their effects on anxiety levels, exhibiting an overall masking effect unrelated to depression levels. Discussion: This study addresses the gap in research on the professional psychological qualities of medical students by providing a reliable measurement tool. The findings shed light on the complex mechanisms through which these qualities impact the mental health process. The scale can be used by other researchers to assess medical students' professional psychological qualities and further investigate their relationship with mental health outcomes.

11.
Bioact Mater ; 34: 51-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38186960

RESUMO

Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-ß, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.

12.
Mol Reprod Dev ; 80(1): 59-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23150429

RESUMO

Uterine decidualization, characterized by stromal cell proliferation and differentiation into polyploid decidual cells, is critical to the establishment of pregnancy in mice, although the mechanism underlying this process remains poorly understood. This study is the first to investigate the expression of gamma-amino butyric acid (GABA) and the GABA A-type receptor π subunit (GABPR) in the early-pregnancy mouse uterus and their roles in decidualization. The expression of GABRP was detected from Day 4 to 8 of pregnancy. The effects of GABA and GABA A-type receptor on cell proliferation and apoptosis were investigated using the Cell Titer 96® AQueous One Solution Cell Proliferation Assay and flow cytometry. The levels of cyclin D3 protein were measured in cultured stromal cells artificially induced to undergo decidualization, and treated with GABA and a GABA A-type receptor agonist or antagonist, respectively, at the same time. mRNA expression of gabrp in implantation sites was lower than that in inter-implanted sites. GABA and GABRP protein were localized in the luminal and glandular epithelium, stromal cells, and decidual cells. In vitro, GABPR protein level was decreased in cultured stromal cells during the decidualization process. The addition of GABA and the GABA A-type receptor agonist Muscimol inhibited stromal cell proliferation, promoted apoptosis, and arrested cells in S-phase, followed by decreased expression of cyclin D3. These results show that in mice, GABA was actively involved in inhibiting stromal cell proliferation and suppresses decidualization progress through GABA A-type receptors by down-regulating cyclin D3 level.


Assuntos
Ciclina D3/metabolismo , Decídua/fisiologia , Receptores de GABA-A/metabolismo , Células Estromais/fisiologia , Útero/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Decídua/citologia , Decídua/efeitos dos fármacos , Decídua/metabolismo , Regulação para Baixo , Feminino , Citometria de Fluxo , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Camundongos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Útero/citologia , Útero/efeitos dos fármacos , Útero/metabolismo , Ácido gama-Aminobutírico/farmacologia
13.
Folia Neuropathol ; 61(1): 105-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114966

RESUMO

INTRODUCTION: Acute cerebral ischemic stroke (AIS) dramatically influences patients' quality of life. lncRNA NORAD (NORAD) has been studied in cerebrovascular diseases, which are potential risk factors for AIS. The specific significance of NORAD is unclear. This study aimed to assess the role of NORAD in AIS, and to provide therapeutic value for its' treatment. MATERIAL AND METHODS: A total of 103 AIS patients and 95 healthy individuals (control) were enrolled into this study. Expression level of NORAD in the plasma of all participants was analyzed by PCR. Diagnostic potential of NORAD in AIS was evaluated by ROC analysis, while Kaplan-Meier and Cox regression analyses were conducted to assess its' prognostic value in AIS. RESULTS: A significantly increased level of NORAD was observed in AIS patients compared with healthy individuals. The upregulation of NORAD could dramatically discriminate AIS patients from healthy individuals with high sensitivity (81.60%) and specificity (88.40%). NORAD was positively correlated with patients' high-sensitivity C-reactive protein (hs CRP, r = 0.796), matrix metalloproteinase-9 (MMP9, r = 0.757), and NIHSS scores ( r = 0.840), and negatively related to pc-ASPECTS scores ( r = -0.607). Moreover, NORAD upregulation was associated with patients' unfavorable prognosis and served as an independent prognostic biomarker, together with NIHSS and pc-ASPECTS scores of AIS patients. CONCLUSIONS: NORAD was upregulated in AIS, which can discriminate AIS patients, and was closely correlated with severe development and poor prognosis of patients.


Assuntos
AVC Isquêmico , RNA Longo não Codificante , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico , RNA Longo não Codificante/genética , Qualidade de Vida , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/genética , Prognóstico
14.
Front Cell Dev Biol ; 11: 1158936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283947

RESUMO

Stem cells from the apical papilla (SCAPs) are promising candidates for regenerative endodontic treatment and tissue regeneration in general. However, harvesting enough cells from the limited apical papilla tissue is difficult, and the cells lose their primary phenotype over many passages. To get over these challenges, we immortalized human SCAPs with lentiviruses overexpressing human telomerase reverse transcriptase (hTERT). Human immortalized SCAPs (hiSCAPs) exhibited long-term proliferative activity without tumorigenic potential. Cells also expressed mesenchymal and progenitor biomarkers and exhibited multiple differentiation potentials. Interestingly, hiSCAPs gained a stronger potential for osteogenic differentiation than the primary cells. To further investigate whether hiSCAPs could become prospective seed cells in bone tissue engineering, in vitro and in vivo studies were performed, and the results indicated that hiSCAPs exhibited strong osteogenic differentiation ability after infection with recombinant adenoviruses expressing BMP9 (AdBMP9). In addition, we revealed that BMP9 could upregulate ALK1 and BMPRII, leading to an increase in phosphorylated Smad1 to induce the osteogenic differentiation of hiSCAPs. These results support the application of hiSCAPs in tissue engineering/regeneration schemes as a stable stem cell source for osteogenic differentiation and biomineralization, which could be further used in stem cell-based clinical therapies.

15.
Front Bioeng Biotechnol ; 11: 1112335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057137

RESUMO

Objective: Extraskeletal vertical bone augmentation in oral implant surgery requires extraosseous regeneration beyond the anatomical contour of the alveolar bone. It is necessary to find a better technical/clinical solution to solve the dilemma of vertical bone augmentation. 3D-printed scaffolds are all oriented to general bone defect repair, but special bone augmentation design still needs improvement. Methods: This study aimed to develop a structural pergola-like scaffold to be loaded with stem cells from the apical papilla (SCAPs), bone morphogenetic protein 9 (BMP9) and vascular endothelial growth factor (VEGF) to verify its bone augmentation ability even under insufficient blood flow supply. Scaffold biomechanical and fluid flow optimization design by finite element analysis (FEA) and computational fluid dynamics (CFD) was performed on pergola-like additive-manufactured scaffolds with various porosity and pore size distributions. The scaffold geometrical configuration showing better biomechanical and fluid dynamics properties was chosen to co-culture for 2 months in subcutaneously into nude mice, with different SCAPs, BMP9, and (or) VEGF combinations. Finally, the samples were removed for Micro-CT and histological analysis. Results: Micro-CT and histological analysis of the explanted scaffolds showed new bone formation in the "Scaffold + SCAPs + BMP9" and the "Scaffold + SCAPs + BMP9 + VEGF" groups where the VEGF addition did not significantly improve osteogenesis. No new bone formation was observed either for the "Blank Scaffold" and the "Scaffold + SCAPs + GFP" group. The results of this study indicate that BMP9 can effectively promote the osteogenic differentiation of SCAPs. Conclusion: The pergola-like scaffold can be used as an effective carrier and support device for new bone regeneration and mineralization in bone tissue engineering, and can play a crucial role in obtaining considerable vertical bone augmentation even under poor blood supply.

16.
Stem Cells Dev ; 32(23-24): 758-767, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823745

RESUMO

The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that Agt is a specific marker of SMG serous acinar cells, whereas Gal is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that Agt and Gal represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.


Assuntos
Células Acinares , Galanina , Animais , Camundongos , Angiotensinogênio , Mamíferos , Glândulas Salivares , Análise da Expressão Gênica de Célula Única , Glândula Submandibular
20.
Int J Mol Med ; 50(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069228

RESUMO

Saliva is crucial for lubricating the mouth and aiding in food digestion. However, the occurrence of oral dysfunction, such as xerostomia, dysphagia or oral infection can markedly reduce the quality of life of affected individuals. The major salivary glands include the submandibular gland (SMG), and sublingual and parotid glands; they are the larger glands in mammals that produce the majority of the saliva. The SMG serves as an effective model for the study of branching morphogenesis and functional regeneration. In order to better understand the key dynamic gene expression patterns during salivary gland development and functional regeneration, it is crucial to search for a panel of reliable reference genes. The present study thus aimed to identify superior reference genes to normalize gene expression data in the SMG under states of development and functional regeneration. First, the developmental SMG samples were harvested from mice in the embryonic and post­natal periods. Functional regeneration samples from a ductal ligation/de­ligation model were obtained at several stages. A total of 12 reference genes (Actb, Actg1, Ubc, Uba1, Uba52, Ube2c, Tuba1a, Tuba1b, Tubb5, H2afy, H2afx and Gapdh) from 430 candidates involving tubulin, histone, actin, ubiquitin and GAPDH family members were screened via transcriptome sequencing (RNA­seq) analysis. RT­qPCR (SYBR­Green) and western blot analysis were then used to semi­quantitatively assess gene and protein expression. The stability of expression was evaluated using the ΔCq, geNorm, BestKeeper, NormFinder and RefFinder methods and software. Actg1 exhibited the highest stability in the SMG developmental stage, while Tubb5 was recommended as the most stable reference gene for the SMG regenerative stage. In summary, the present study provides evidence­based selections for superior reference genes in the SMG during the stages of development and functional regeneration.


Assuntos
Qualidade de Vida , Glândula Submandibular , Animais , Mamíferos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Saliva/metabolismo , Glândulas Salivares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA