Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11438-11446, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38051760

RESUMO

Single-molecule antigen detection using nanopores offers a promising alternative for accurate virus testing to contain their transmission. However, the selective and efficient identification of small viral proteins directly in human biofluids remains a challenge. Here, we report a nanopore sensing strategy based on a customized DNA molecular probe that combines an aptamer and an antibody to enhance the single-molecule detection of mpox virus (MPXV) A29 protein, a small protein with an M.W. of ca. 14 kDa. The formation of the aptamer-target-antibody sandwich structures enables efficient identification of targets when translocating through the nanopore. This technique can accurately detect A29 protein with a limit of detection of ∼11 fM and can distinguish the MPXV A29 from vaccinia virus A27 protein (a difference of only four amino acids) and Varicella Zoster Virus (VZV) protein directly in biofluids. The simplicity, high selectivity, and sensitivity of this approach have the potential to contribute to the diagnosis of viruses in point-of-care settings.


Assuntos
Mpox , Nanoporos , Humanos , Proteínas/química , Nanotecnologia/métodos , DNA/química , Anticorpos , Oligonucleotídeos
2.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675595

RESUMO

The COVID-19 pandemic over recent years has shown a great need for the rapid, low-cost, and on-site detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, an aptamer-based colloidal gold nanoparticle lateral flow test strip was well developed to realize the visual detection of wild-type SARS-CoV-2 spike proteins (SPs) and multiple variants. Under the optimal reaction conditions, a low detection limit of SARS-CoV-2 S proteins of 0.68 nM was acquired, and the actual detection recovery was 83.3% to 108.8% for real-world samples. This suggests a potential tool for the prompt detection of SARS-CoV-2 with good sensitivity and accuracy, and a new method for the development of alternative antibody test strips for the detection of other viral targets.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Ouro , Nanopartículas Metálicas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Aptâmeros de Nucleotídeos/química , COVID-19/diagnóstico , COVID-19/virologia , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Fitas Reagentes , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química
3.
Sens Actuators B Chem ; 380: 133387, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36694572

RESUMO

Antigen-detecting rapid diagnostic testing (Ag-RDT) has contributed to containing the spread of SARS-CoV-2 variants of concern (VOCs). In this study, we proposed a biomimetic clamp assay for impedimetric SARS-CoV-2 nucleocapsid protein (Np) detection. The DNA biomimetic clamp (DNA-BC) is formed by a pair of Np aptamers connected via a T20 spacer. The 5'- terminal of the DNA-BC is phosphate-modified and then anchored on the surface of the screen-printed gold electrode, which has been pre-coated with Au@UiO-66-NH2. The integrated DNA-material sensing biochip is fabricated through the strong Zr-O-P bonds to form a clamp-type impedimetric aptasensor. It is demonstrated that the aptasensor could achieve Np detection in one step within 11 min and shows pronounced sensitivity with a detection limit of 0.31 pg mL-1. Above all, the aptasensor displays great specificity and stability under physiological conditions as well as various water environments. It is a potentially promising strategy to exploit reliable Ag-RDT products to confront the ongoing epidemic.

4.
Nucleic Acids Res ; 48(19): 10680-10690, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33021630

RESUMO

Circular DNA aptamers are powerful candidates for therapeutic applications given their dramatically enhanced biostability. Herein we report the first effort to evolve circular DNA aptamers that bind a human protein directly in serum, a complex biofluid. Targeting human thrombin, this strategy has led to the discovery of a circular aptamer, named CTBA4T-B1, that exhibits very high binding affinity (with a dissociation constant of 19 pM), excellent anticoagulation activity (with the half maximal inhibitory concentration of 90 pM) and high stability (with a half-life of 8 h) in human serum, highlighting the advantage of performing aptamer selection directly in the environment where the application is intended. CTBA4T-B1 is predicted to adopt a unique structural fold with a central two-tiered guanine quadruplex capped by two long stem-loops. This structural arrangement differs from all known thrombin binding linear DNA aptamers, demonstrating the added advantage of evolving aptamers from circular DNA libraries. The method described here permits the derivation of circular DNA aptamers directly in biological fluids and could potentially be adapted to generate other types of aptamers for therapeutic applications.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA Circular/química , Trombina/metabolismo , Aptâmeros de Nucleotídeos/sangue , Aptâmeros de Nucleotídeos/metabolismo , DNA Circular/sangue , DNA Circular/metabolismo , Quadruplex G , Humanos , Ligação Proteica , Trombina/química
5.
Anal Chem ; 93(49): 16646-16654, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34847324

RESUMO

With the outbreak of COVID-19, which is fast transmitting and highly contagious, the development of rapid, highly specific, and sensitive detection kits has become a research hotspot. The existing assay methods for SARS-CoV-2 are mainly based on enzymatic reactions, which require expensive reagents, hindering popular use, especially in resource-constrained areas. Herein, we propose an aptamer-based method for the assay of SARS-CoV-2 via binding of the spike protein using functionalized biomimetic nanochannels. To get the analogous effect of human ACE2, a receptor for the spike protein, the aptamer to bind to the spike S1 protein has been first screened by a SELEX technique and then immobilized on the previously prepared nanochannels. In the presence of SARS-CoV-2, the changes in steric hindrance and charge density on the surface of the nanochannels will affect the ion transport, along with a rapid electrochemical response. Our method has been successfully applied to detect the viral particles in clinical pharyngeal swab specimens in one step without sample treatment. We expect this rapid, reagent-free, and sensitive assay method to be developed as a useful tool for diagnosing COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos
6.
Analyst ; 145(12): 4130-4137, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32421137

RESUMO

Antibodies have now been widely used for clinical treatment of a number of tumors. However, there are serious problems associated with antibody therapy, such as potential interactions of antibodies with the immune system as well as long production cycles. Recently, aptamers have been found to function similar to antibodies in terms of affinity and specificity to certain proteins and are attracting much attention for their low immunogenicity, easy chemical synthesis, and efficient penetration into tissues due to their small size. However, how to access high affinity and selectivity aptamers efficiently for further analysis is still open to be resolved. Herein, an aptamer discovery method that combines the continuous flow ddPCR technology with cytometer sorting of beads is reported, such that we have obtained DNA aptamers binding specifically to PD-1 with an affinity of over 60-fold higher than that for the best-reported method.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Reação em Cadeia da Polimerase/métodos , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica
7.
Mediators Inflamm ; 2020: 3645157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32148437

RESUMO

Myasthenia gravis (MG) is a CD4+ T cell-dependent autoimmune disease resulting from aberrant immune response mediated by circulating autoantibodies at the neuromuscular junction. Intravenous immunoglobulin (IVIg) is an expensive and commonly used immunotherapeutic approach to treat patients with MG. The mechanisms of actions involved in IVIg treatment, however, remain to be investigated. In an effort to examine the roles of various subsets of CD4+ T cells in the periphery blood of MG and uncover the mechanisms that contribute to the therapeutical effects of IVIg, we first demonstrated that a subset of CD4+ T cells, CTLA-4-expressing regulatory T (Treg) cells, were underrepresented and functionally defective in MG patients. The dynamic profiling during the IVIg therapy course further revealed an inverse relationship between the frequency of CTLA-4+ Treg and the quantitative MG (QMG) score that represents disease severity. Our mechanistic studies indicated that IVIg expands CTLA-4-Treg cells via modulating antigen-presenting dendritic cells (DCs). To determine the molecular defects of CTLA-4 in abnormities of Treg in MG patients, we demonstrated hypermethylation at -658 and -793 CpGs of CTLA-4 promoter in MG Tregs. Interestingly, IVIg therapy significantly reduced the methylation level at these two sites in MG patients. Overall, our study may suggest a role of CTLA-4 in functionally defected Treg cells in MG and its actions involved in IVIg therapy.


Assuntos
Antígeno CTLA-4/metabolismo , Miastenia Gravis/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T/metabolismo , Adulto , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imunoglobulinas Intravenosas , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/imunologia , Reação em Cadeia da Polimerase em Tempo Real
8.
Proc Natl Acad Sci U S A ; 112(32): 10002-7, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216949

RESUMO

p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice.


Assuntos
Aminoácidos/genética , Aptâmeros de Nucleotídeos/isolamento & purificação , Mutação/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Administração Intravenosa , Substituição de Aminoácidos , Animais , Sequência de Bases , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Nanopartículas/química , Neoplasias/patologia , Técnica de Seleção de Aptâmeros , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Anal Chem ; 89(10): 5270-5277, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28414217

RESUMO

Phthalic acid esters (PAEs) are ubiquitous in the environment, and some of them are recognized as endocrine disruptors that cause concerns on ecosystem functioning and public health. Due to the diversity of PAEs in the environment, there is a vital need to detect the total concentration of PAEs in a timely and low-cost way. To fulfill this requirement, it is highly desired to obtain group-specific PAE binders that are specific to the basic PAE skeleton. In this study, for the first time we have identified the group-specific PAE-binding aptamers via rationally designed target immobilization. The two target immobilization strategies were adopted to display either the phthalic ester group or the alkyl chain, respectively, at the surface of the immobilization matrix. The former enabled the rapid enrichment of aptamers after four rounds of selection. The top 100 sequences are cytosine-rich (44.7%) and differentiate from each other by only 1-4 nucleotides at limited locations. The top two aptamers all display the nanomolar dissociation constants to both the immobilized target and the free PAEs [dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP)]. We further demonstrate the applications of the aptamers in the development of high-throughput PAE assays and DEHP electrochemical biosensors with exceptional sensitivity [limit of detection (LOD), 10 pM] and selectivity (>105-fold). PAE aptamers targeting one of the most sought for targets thus offer the promise of convenient, low-cost detection of total PAEs. Our study also provides insights on the aptamer selection and sensor development of highly hydrophobic small molecules.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Ácidos Ftálicos/análise , Dibutilftalato/análise , Dietilexilftalato/análise , Técnicas Eletroquímicas , Disruptores Endócrinos/análise , Ésteres/química , Imobilização , Ácidos Nucleicos Imobilizados/química , Cinética , Microscopia de Fluorescência
10.
Analyst ; 142(17): 3136-3139, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28792025

RESUMO

The development of a simple, low-cost, time-saving and universally applicable method to monitor the progression of aptamer selection is particularly challenging. Herein, a combined strategy dependent on quantitative polymerase chain reaction amplification curve (AC) and melting curve analysis (MCA) is developed to monitor the convergence of the aptamer species during selection progress. As a parallel and complementary method to affinity tests and binding analyses, the AC-MCA method can be used to achieve the DNA complexity assay when affinity is undetectable. It is independent of the target properties and SELEX methods. Therefore, it has been demonstrated as a universal monitoring tool in different SELEX methods towards different targets (small molecules, proteins, bacteria and cancer cells). The AC-MCA method will facilitate current new aptamer discovery and aptamer-based wide application.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/análise , Técnica de Seleção de Aptâmeros , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pseudomonas syringae
11.
Analyst ; 140(8): 2664-70, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25728760

RESUMO

Aptamers have attracted much attention due to their ability to bind to target molecules with high affinity and specificity. The development of an approach capable of efficiently generating aptamers through systematic evolution of ligands by exponential enrichment (SELEX) is particularly challenging. Herein, a fraction collection approach in capillary electrophoresis SELEX (FCE-SELEX) for the partition of a bound DNA-target complex is developed. By integrating fraction collection with a facile oil seal method for avoiding contamination while amplifying the bound DNA-target complex, in a single round of selection, a streptavidin-binding aptamer (SBA) has been generated. The affinity of aptamer SBA-36 for streptavidin (SA) is determined as 30.8 nM by surface plasmon resonance (SPR). Selectivity and biotin competition experiments demonstrate that the SBA-36 aptamer selected by FCE-SELEX is as efficient as those from other methods. Based on the ability of fraction collection in partition and collection of the aptamer-target complex from the original DNA library, FCE-SELEX can be a universal tool for the development of aptamers.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Eletroforese Capilar/métodos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Estreptavidina/metabolismo
12.
Anal Biochem ; 466: 38-43, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172133

RESUMO

Endotoxin, which is also known as lipopolysaccharide (LPS), is a marker for intruding gram-negative pathogens. It is essential to detect endotoxin quickly and sensitively in a complex milieu. A new flow cytometry (FCM)-based magnetic aptasensor assay that employs two endotoxin-binding aptamers and magnetic beads has been developed to detect endotoxin. The endotoxin-conjugated sandwich complex on magnetic beads was observed by scanning confocal laser microscopy. The resulting magnetic aptasensor rapidly detected (<1 min) endotoxin within a broad dynamic detection range of 10(-8) to 10(0)mg/ml in the presence of bovine serum albumin (BSA), RNA, sucrose, and glucose, which are most likely to coexist with endotoxin in the majority of biological liquids. Only 2 µl of magnetic aptasensor was required to quantify the endotoxin solution. Furthermore, the magnetic aptasensor could be regenerated seven times and still presented an outstanding response to the endotoxin solution. Therefore, the magnetic aptasensor exhibited high sensitivity, selectivity, and reproducibility, thereby serving as a powerful tool for the quality control and high-throughput detection of endotoxin in the food and pharmaceutical industries.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas de Química Analítica/métodos , Endotoxinas/análise , Citometria de Fluxo , Fenômenos Magnéticos , Técnicas de Química Analítica/instrumentação , Endotoxinas/química , Fluorescência , Limite de Detecção , Reprodutibilidade dos Testes
13.
Biomed Pharmacother ; 176: 116826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838507

RESUMO

BACKGROUND: Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A) acts upstream of the Akt regulatory pathway and is abnormally expressed in many types of malignancies. However, the role and mechanism of PIP5K1A in colorectal cancer (CRC) have not yet been reported. In this study, we aimed to determine the association between PIP5K1A and progression of CRC and assess the efficacy and mechanism by which rupatadine targets PIP5K1A. METHODS: Firstly, expression and function of PIP5K1A in CRC were investigated by human colon cancer tissue chip analysis and cell proliferation assay. Next, rupatadine was screened by computational screening and cytotoxicity assay and interactions between PIP5K1A and rupatadine assessed by kinase activity detection assay and bio-layer interferometry analysis. Next, rupatadine's anti-tumor effect was evaluated by in vivo and in vitro pharmacodynamic assays. Finally, rupatadine's anti-tumor mechanism was explored by quantitative real-time reverse-transcription polymerase chain reaction, western blot, and immunofluorescence. RESULTS: We found that PIP5K1A exerts tumor-promoting effects as a proto-oncogene in CRC and aberrant PIP5K1A expression correlates with CRC malignancy. We also found that rupatadine down-regulates cyclin-dependent kinase 2 and cyclin D1 protein expression by inhibiting the PIP5K1A/Akt/GSK-3ß pathway, induces cell cycle arrest, and inhibits CRC cell proliferation in vitro and in vivo. CONCLUSIONS: PIP5K1A is a potential drug target for treating CRC. Rupatadine, which targets PIP5K1A, could serve as a new option for treating CRC, its therapeutic mechanism being related to regulation of the Akt/GSK-3ß signaling pathway.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Ciproeptadina , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ciproeptadina/farmacologia , Ciproeptadina/análogos & derivados , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Masculino , Proto-Oncogene Mas , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Antineoplásicos/farmacologia
14.
Anal Methods ; 16(19): 3039-3046, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38682261

RESUMO

Beta-lactoglobulin (ß-Lg), a prominent milk protein, is a major contributor to milk allergies. The quantitative assessment of ß-Lg is a valuable method for assessing the allergenic potential of dairy products. In this study, a specific aptamer, ß-Lg-01, with an affinity constant (KD) of 28.6 nM for ß-Lg was screened through seven rounds of magnetic bead SELEX (MB-SELEX). A novel bio-layer interferometry (BLI)-based aptasensor was developed, which had a limit of detection (LOD) of 0.3 ng mL-1, a linear range of 1.5 ng mL-1-15 µg mL-1, and a recovery rate of 102-116% among the milk samples. This aptasensor provides a potential tool for the detection and risk assessment of ß-Lg within 10 min.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Lactoglobulinas , Leite , Técnica de Seleção de Aptâmeros , Lactoglobulinas/análise , Lactoglobulinas/química , Leite/química , Técnicas Biossensoriais/métodos , Animais , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Limite de Detecção , Interferometria/métodos
15.
ACS Sens ; 9(6): 2897-2906, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776471

RESUMO

Ovarian cancer (OC) has the highest mortality rate among malignant tumors, primarily because it is difficult to diagnose early. Exosomes, a type of extracellular vesicle rich in parental information, have garnered significant attention in the field of cancer diagnosis and treatment. They play an important regulatory role in the occurrence, development, and metastasis of OC. Consequently, exosomes have emerged as noninvasive biomarkers for early cancer detection. Therefore, identifying cancer-derived exosomes may offer a novel biomarker for the early detection of OC. In this study, we developed a metal-organic frameworks assembled "double hook"-type aptamer electrochemical sensor, which enables accurate early diagnosis of OC. Under optimal experimental conditions, electrochemical impedance spectroscopy technology demonstrated a good linear relationship within the concentration range of 31-3.1 × 106 particles per microliter, with a detection limit as low as 12 particles per microliter. The universal exosome detection platform is constructed, and this platform can not only differentiate between high-grade serous ovarian cancer (HGSOC) patients and healthy individuals but also distinguish between HGSOC patients and nonhigh-grade serous OC (non-HGSOC). Consequently, it provides a novel strategy for the early diagnosis of OC and holds great significance in clinical differential diagnosis.


Assuntos
Detecção Precoce de Câncer , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/diagnóstico , Humanos , Detecção Precoce de Câncer/métodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Estruturas Metalorgânicas/química , Exossomos/química , Limite de Detecção , Espectroscopia Dielétrica/métodos , Biomarcadores Tumorais/análise
16.
Biosens Bioelectron ; 257: 116313, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688229

RESUMO

The emergence and rapid spread of Mpox (formerly monkeypox) have caused significant societal challenges. Adequate and appropriate diagnostics procedures are an urgent necessity. Herein, we discover a pair of aptamers through the systematic evolution of ligands by exponential enrichment (SELEX) that exhibit high affinity and bind to different sites towards the A29 protein of the Mpox virus. Subsequently, we propose a facile, sensitive, convenient CRISPR/Cas12a-mediated aptasensor for detecting the A29 antigen. The procedure employs the bivalent aptamers recognition, which induces the formation of a proximity switch probe and initiates subsequent cascade strand displacement reactions, then triggers CRISPR/Cas12a DNA trans-cleavage to achieve the sensitive detection of Mpox. Our method enables selective and ultrasensitive evaluation of the A29 protein within the range of 1 ng mL-1 to 1 µg mL-1, with a limit of detection (LOD) at 0.28 ng mL-1. Moreover, spiked A29 protein recovery exceeds 96.9%, while the detection activity remains above 91.9% after six months of storage at 4 °C. This aptasensor provides a novel avenue for exploring clinical diagnosis in cases involving Mpox as facilitating development in various analyte sensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Limite de Detecção , Técnica de Seleção de Aptâmeros , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Humanos , Antígenos Virais/análise , Proteínas Associadas a CRISPR/química , Proteínas de Bactérias , Endodesoxirribonucleases
17.
J Biol Inorg Chem ; 18(2): 277-286, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23340690

RESUMO

The purpose of this work is to characterize the interactions of two disulfide-constrained cyclic tetrapeptides [c(Ac-Cys-Pro-Phe-Cys-NH(2)), SS1; c(Ac-Cys-Pro-Gly-Cys-NH(2)), SS2] with Cu(2+) ions in order to facilitate the design of cyclic peptides as sensors for metal ions. The Cu(2+)-peptide complex cations at m/z 569.1315 for Cu(2+)-SS1 and m/z 479.0815 for Cu(2+)-SS2 were detected by mass spectrometry. The gas-phase fragmentation of the Cu(2+)-peptide complexes was studied by collision-induced dissociation and suggests the atoms involved in the coordination. Cu(2+) ion binds to a single SS1 or SS2 with K (d(app)) of 0.57 ± 0.02 and 0.55 ± 0.01 µM, respectively. Isothermal titration calorimetry data indicate both enthalpic and entropic contributions for the binding of Cu(2+) ion to SS1 and SS2. The characteristic wavenumber of 947 cm(-1) and the changes at 1,664 and 1,530 cm(-1) in the infrared spectrum suggest that the sulfydryl of cysteine, the carbonyl group, and amide II are involved in the coordination of Cu(2+). The X-ray absorption near-edge structure signal from the Cu(2+)-peptide complex corresponds to the four-coordination structure. The extended X-ray absorption fine structure and electron paramagnetic resonance results demonstrate the Cu(2+) ion is in an S/N/2O coordination environment, and is a distinct type II copper center. Theoretical calculations further demonstrate that Cu(2+) ion binds to SS1 or SS2 in a slightly distorted tetragonal geometry with an S/N/2O environment and the minimum potential energy.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Cobre/química , Cistina/química , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Calorimetria , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Molecular , Peso Molecular , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
18.
Anal Methods ; 15(16): 2039-2043, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37066673

RESUMO

In this study, we constructed and optimized a semi-automatic instrument to perform aptamer SELEX targeting multiple proteins simultaneously. Our work provides a simple SELEX platform characterized by real-time feedback, which is time efficient and can reduce human intervention. A number of aptamers were rapidly screened by this method. Moreover, the binding affinities of these aptamers were verified by various methods, including SPR and flow cytometry, which supports the applicability and reliability of our newly established aptamer SELEX system.


Assuntos
Aptâmeros de Nucleotídeos , Humanos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Reprodutibilidade dos Testes , Citometria de Fluxo
19.
Crit Rev Anal Chem ; 53(7): 1433-1454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35085047

RESUMO

In view of ever-increasing environmental pollution, there is an immediate requirement to promote cheap, multiplexed, sensitive and fast biosensing systems to monitor these pollutants or contaminants. Aptamers have shown numerous advantages in being used as molecular recognition elements in various biosensing devices. Graphene and graphene-based materials/nanohybrids combined with several detection methods exhibit great potential owing to their exceptional optical, electronic and physicochemical properties which can be employed extensively to monitor environmental contaminants. For environmental monitoring applications, aptamers have been successfully combined with graphene-based nanohybrids to produce a wide range of innovative methodologies. Aptamers are immobilized at the surface of graphene based nanohybrids via covalent and non-covalent strategies. This review highlights the design, working principle, recent developmental advances and applications of graphene based nanohybrid aptasensors (GNH-Apts) (since January 2014 to September 2021) with a special emphasis on two major signal-transduction methods, i.e., optical and electrochemical for the monitoring of pesticides, heavy metals, bacteria, antibiotics, and organic compounds from different environmental samples (e.g., water, soil and related). Lastly, the challenges confronted by scientists and the possible future outlook have also been addressed. It is expected that high-performance graphene-based nanohybrid aptasensors would find broad applications in the field of environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Praguicidas , Grafite/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Monitoramento Ambiental
20.
Talanta ; 256: 124312, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738621

RESUMO

The CRISPR/Cas systems have provided wide biosensing applications. Particularly, the aptamer-involved CRISPR/Cas sensor system powerfully expanded to non-nucleic-acid targets. However, tailoring the sequence of the aptamer to explore the relationship between affinity and the activation of CRISPR/Cas12a trans-cleavage activity has not been reported yet. Herein, we developed a series of new aptamers toward the spike protein 1(S1) of SARS-CoV-2. Surface plasmon resonance measurements showed that the affinity of these aptamers to S1 was at the nM level. Subsequently, a "SET" effect (Sequence Essential Trans-cleavage activity) is discovered for the activation of CRISPR/Cas12a trans-cleavage activity. That is, an aptamer, as the activator, sequence needs to be tailored to activate CRISPR/Cas12a efficiently. A balance should be reached between affinity and activation ability. On the one hand, high affinity ensures target recognition performance, and on the other hand, activation can achieve adequate amplification and output of recognition signals. The optimized sequence (with 27 nucleotides, for short 27-nt) not only recognizes the target with a high affinity and specificity but also can trigger the CRISPR/Cas12a trans-cleavage activity efficiently, showing an excellent detection performance in electrochemical biosensors. The detection limit for SARS-CoV-2 S1 can be low at 1.5 pg mL-1. The new CRISPR/Cas12a-derived aptasensor also displays a remarkable ability to detect Beta, Delta, and Omicron variants but is selective toward other kinds of proteins. Above all, it is robust for point-of-care testing (POCT) in complex biological fluids, such as saliva, urine, and serum, and provides a universal and scalable detecting platform. Our results provide new insights into aptamer development and a different strategy for COVID-19 antigen detection and biosensor development.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , Sistemas CRISPR-Cas , SARS-CoV-2/genética , Oligonucleotídeos , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA