Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 103(7): 1124-1135, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29545351

RESUMO

Sickle cell disease is associated with acute painful episodes and chronic intractable pain. Endothelin-1, a known pain inducer, is elevated in the blood plasma of both sickle cell patients and mouse models of sickle cell disease. We show here that the levels of endothelin-1 and its endothelin type A receptor are increased in the dorsal root ganglia of a mouse model of sickle cell disease. Pharmacologic inhibition or neuron-specific knockdown of endothelin type A receptors in primary sensory neurons of dorsal root ganglia alleviated basal and post-hypoxia evoked pain hypersensitivities in sickle cell mice. Mechanistically, endothelin type A receptors contribute to sickle cell disease-associated pain likely through the activation of NF-κB-induced Nav1.8 channel upregulation in primary sensory neurons of sickle cell mice. Our findings suggest that endothelin type A receptor is a potential target for the management of sickle cell disease-associated pain, although this expectation needs to be further verified in clinical settings.


Assuntos
Anemia Falciforme/complicações , Anemia Falciforme/genética , Dor/etiologia , Receptor de Endotelina A/genética , Anemia Falciforme/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endotelina-1/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/diagnóstico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dor/diagnóstico , Dor/metabolismo , Células do Corno Posterior/metabolismo , Receptor de Endotelina A/metabolismo
2.
FASEB J ; 31(1): 224-237, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702770

RESUMO

Plasma membrane calcium ATPase 2 (PMCA2) is a calcium pump that plays important roles in neuronal function. Although it is expressed in pain-associated regions of the CNS, including in the dorsal horn (DH), its contribution to pain remains undefined. The present study assessed the role of PMCA2 in pain responsiveness and the link between PMCA2 and glutamate receptors, GABA receptors (GABARs), and glutamate transporters that have been implicated in pain processing in the DH of adult female and male PMCA2+/+ and PMCA2+/- mice. Behavioral assays evaluated mechanical and thermal pain responsiveness. Mechanical sensitivity was significantly increased by 52% and heat sensitivity was reduced by 29% in female, but not male, PMCA2+/- mice compared with PMCA2+/+ controls. There were female-specific changes in metabotropic glutamate receptor 1, NMDA receptor 2A, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR1, GABABR1, and GABABR2 levels, whereas metabotropic glutamate receptor 5, NMDA receptor 2B, GluR2, and GABAARα2 levels were not altered. Glutamate aspartate transporter levels were higher and glial glutamate transporter 1 levels were lower in the DH of female, but not male, PMCA2+/- mice. These findings indicate a novel role for PMCA2 in modality- and sex-dependent pain responsiveness. Female-specific molecular changes potentially account for the altered pain responses.-Khariv, V., Ni, L., Ratnayake, A., Sampath, S., Lutz, B. M., Tao, X.-X., Heary, R. F., Elkabes, S. Impaired sensitivity to pain stimuli in plasma membrane calcium ATPase 2 (PMCA2) heterozygous mice: a possible modality- and sex-specific role for PMCA2 in nociception.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Nociceptividade/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Distúrbios Somatossensoriais/metabolismo , Animais , Membrana Celular/enzimologia , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Fatores Sexuais , Distúrbios Somatossensoriais/genética
3.
Mol Pain ; 13: 1744806917740681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29056068

RESUMO

Abstract: Metastatic bone tumor-induced changes in gene transcription and translation in pain-related regions of the nervous system may participate in the development and maintenance of bone cancer pain. Epigenetic modifications including DNA methylation regulate gene transcription. Here, we report that intrathecal injection of decitabine, a DNA methyltransferase (DNMT) inhibitor, dose dependently attenuated the development and maintenance of bone cancer pain induced by injecting prostate cancer cells into the tibia. The level of the de novo DNMT3a, but not DNMT3b, time dependently increased in the ipsilateral L4/5 dorsal horn (not L4/5 dorsal root ganglion) after prostate cancer cells injection. Blocking this increase through microinjection of recombinant adeno-associated virus 5 (AAV5) expressing Dnmt3a shRNA into dorsal horn rescued prostate cancer cells-induced downregulation of dorsal horn Kv1.2 expression and impaired prostate cancer cells-induced pain hypersensitivity. In turn, mimicking this increase through microinjection of AAV5 expressing full-length Dnmt3a into dorsal horn reduced dorsal horn Kv1.2 expression and produced pain hypersensitivity in the absence of prostate cancer cells injection. Administration of neither decitabine nor virus affected locomotor function and acute responses to mechanical, thermal, or cold stimuli. Given that Dnmt3a mRNA is co-expressed with Kcna2 mRNA (encoding Kv1.2) in individual dorsal horn neurons, our findings suggest that increased dorsal horn DNMT3a contributes to bone cancer pain through silencing dorsal horn Kv1.2 expression. DNMT3a may represent a potential new target for cancer pain management.


Assuntos
Dor do Câncer/fisiopatologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Canal de Potássio Kv1.2/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Dor do Câncer/metabolismo , DNA Metiltransferase 3A , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Masculino , Dor Musculoesquelética/metabolismo , Dor Musculoesquelética/fisiopatologia , Células do Corno Posterior/metabolismo , Ratos , Corno Dorsal da Medula Espinal/fisiopatologia
4.
J Physiol ; 594(13): 3609-28, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27062607

RESUMO

KEY POINTS: The cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels are thought to be regulated by phospholipase C (PLC), but neither the specific PLC isoform nor the in vivo relevance of this regulation has been established. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 channels in vivo. We show that in small PLCδ4(-/-) TRPM8-positive dorsal root ganglion neurons cold, menthol and WS-12, a selective TRPM8 agonist, evoked significantly larger currents than in wild-type neurons, and action potential frequencies induced by menthol or by current injections were also higher in PLCδ4(-/-) neurons. PLCδ4(-/-) mice showed increased behavioural responses to evaporative cooling, and this effect was inhibited by a TRPM8 antagonist; behavioural responses to heat and mechanical stimuli were not altered. We provide evidence for the involvement of a specific PLC isoform in the regulation of cold sensitivity in mice by regulating TRPM8 activity. ABSTRACT: The transient receptor potential melastatin 8 (TRPM8) ion channel is a major sensor of environmental low temperatures. Ca(2+) -induced activation of phospholipase C (PLC) has been implied in the regulation of TRPM8 channels during menthol- and cold-induced desensitization in vitro. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 in sensory dorsal root ganglion (DRG) neurons. We identified two TRPM8-positive neuronal subpopulations, based on their cell body size. Most TRPM8-positive small neurons also responded to capsaicin, and had significantly larger menthol-induced inward current densities than medium-large cells, most of which did not respond to capsaicin. Small, but not medium-large, PLCδ4(-/-) neurons showed significantly larger currents induced by cold, menthol or WS-12, a specific TRPM8 agonist, compared to wild-type (WT) neurons, but TRPM8 protein levels were not different between the two groups. In current-clamp experiments small neurons had more depolarized resting membrane potentials, and required smaller current injections to generate action potentials (APs) than medium-large cells. In small PLCδ4(-/-) neurons, menthol application induced larger depolarizations and generation of APs with frequencies significantly higher compared to WT neurons. In behavioural experiments PLCδ4(-/-) mice showed greater sensitivity to evaporative cooling by acetone than control animals. Pretreatment with the TRPM8 antagonist PBMC reduced cold-induced responses, and the effect was more pronounced in the PLCδ4(-/-) group. Heat and mechanical sensitivity of the PLCδ4(-/-) mice was not different from WT animals. Our data support the involvement of PLCδ4 in the regulation of TRPM8 channel activity in vivo.


Assuntos
Temperatura Baixa , Fosfolipase C delta/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Comportamento Animal , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Masculino , Camundongos , Camundongos Knockout , Oócitos , Fosfolipase C delta/genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Xenopus laevis
5.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27927796

RESUMO

Neuropathic pain, a distressing and debilitating disorder, is still poorly managed in clinic. Opioids, like morphine, remain the mainstay of prescribed medications in the treatment of this disorder, but their analgesic effects are highly unsatisfactory in part due to nerve injury-induced reduction of opioid receptors in the first-order sensory neurons of dorsal root ganglia. G9a is a repressor of gene expression. We found that nerve injury-induced increases in G9a and its catalyzed repressive marker H3K9m2 are responsible for epigenetic silencing of Oprm1, Oprk1, and Oprd1 genes in the injured dorsal root ganglia. Blocking these increases rescued dorsal root ganglia Oprm1, Oprk1, and Oprd1 gene expression and morphine or loperamide analgesia and prevented the development of morphine or loperamide-induced analgesic tolerance under neuropathic pain conditions. Conversely, mimicking these increases reduced the expression of three opioid receptors and promoted the mu opioid receptor-gated release of primary afferent neurotransmitters. Mechanistically, nerve injury-induced increases in the binding activity of G9a and H3K9me2 to the Oprm1 gene were associated with the reduced binding of cyclic AMP response element binding protein to the Oprm1 gene. These findings suggest that G9a participates in the nerve injury-induced reduction of the Oprm1 gene likely through G9a-triggered blockage in the access of cyclic AMP response element binding protein to this gene.


Assuntos
Proteína de Ligação a CREB/metabolismo , Gânglios Espinais/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Receptores Opioides mu/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Proteína de Ligação a CREB/genética , Modelos Animais de Doenças , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Loperamida/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Entorpecentes/farmacologia , Entorpecentes/uso terapêutico , Ratos Sprague-Dawley , Receptores Opioides/genética , Receptores Opioides/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Receptor de Nociceptina
6.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27030721

RESUMO

BACKGROUND: Peripheral nerve injury leads to changes in gene expression in primary sensory neurons of the injured dorsal root ganglia. These changes are believed to be involved in neuropathic pain genesis. Previously, these changes have been identified using gene microarrays or next generation RNA sequencing with poly-A tail selection, but these approaches cannot provide a more thorough analysis of gene expression alterations after nerve injury. METHODS: The present study chose to eliminate mRNA poly-A tail selection and perform strand-specific next generation RNA sequencing to analyze whole transcriptomes in the injured dorsal root ganglia following spinal nerve ligation. Quantitative real-time reverse transcriptase polymerase chain reaction assay was carried out to verify the changes of some differentially expressed RNAs in the injured dorsal root ganglia after spinal nerve ligation. RESULTS: Our results showed that more than 50 million (M) paired mapped sequences with strand information were yielded in each group (51.87 M-56.12 M in sham vs. 51.08 M-57.99 M in spinal nerve ligation). Six days after spinal nerve ligation, expression levels of 11,163 out of a total of 27,463 identified genes in the injured dorsal root ganglia significantly changed, of which 52.14% were upregulated and 47.86% downregulated. The largest transcriptional changes were observed in protein-coding genes (91.5%) followed by noncoding RNAs. Within 944 differentially expressed noncoding RNAs, the most significant changes were seen in long interspersed noncoding RNAs followed by antisense RNAs, processed transcripts, and pseudogenes. We observed a notable proportion of reads aligning to intronic regions in both groups (44.0% in sham vs. 49.6% in spinal nerve ligation). Using quantitative real-time polymerase chain reaction, we confirmed consistent differential expression of selected genes including Kcna2, Oprm1 as well as lncRNAs Gm21781 and 4732491K20Rik following spinal nerve ligation. CONCLUSION: Our findings suggest that next generation RNA sequencing can be used as a promising approach to analyze the changes of whole transcriptomes in dorsal root ganglia following nerve injury and to possibly identify new targets for prevention and treatment of neuropathic pain.


Assuntos
Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica/métodos , Traumatismos dos Nervos Periféricos/genética , Processamento Alternativo/genética , Animais , Gânglios Espinais/patologia , Genoma , Hiperalgesia/complicações , Hiperalgesia/genética , Ligadura , Vértebras Lombares/patologia , Masculino , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/complicações , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais/genética , Nervos Espinhais/patologia
7.
Anesthesiology ; 125(4): 765-78, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27483126

RESUMO

BACKGROUND: Peripheral nerve injury-induced gene alterations in the dorsal root ganglion (DRG) and spinal cord likely participate in neuropathic pain genesis. Histone methylation gates gene expression. Whether the suppressor of variegation 3-9 homolog 1 (SUV39H1), a histone methyltransferase, contributes to nerve injury-induced nociceptive hypersensitivity is unknown. METHODS: Quantitative real-time reverse transcription polymerase chain reaction analysis, Western blot analysis, or immunohistochemistry were carried out to examine the expression of SUV39H1 mRNA and protein in rat DRG and dorsal horn and its colocalization with DRG µ-opioid receptor (MOR). The effects of a SUV39H1 inhibitor (chaetocin) or SUV39H1 siRNA on fifth lumbar spinal nerve ligation (SNL)-induced DRG MOR down-regulation and nociceptive hypersensitivity were examined. RESULTS: SUV39H1 was detected in neuronal nuclei of the DRG and dorsal horn. It was distributed predominantly in small DRG neurons, in which it coexpressed with MOR. The level of SUV39H1 protein in both injured DRG and ipsilateral fifth lumbar dorsal horn was time dependently increased after SNL. SNL also produced an increase in the amount of SUV39H1 mRNA in the injured DRG (n = 6/time point). Intrathecal chaetocin or SUV39H1 siRNA as well as DRG or intraspinal microinjection of SUV39H1 siRNA impaired SNL-induced allodynia and hyperalgesia (n = 5/group/treatment). DRG microinjection of SUV39H1 siRNA also restored SNL-induced DRG MOR down-regulation (n = 6/group). CONCLUSIONS: The findings of this study suggest that SUV39H1 contributes to nerve injury-induced allodynia and hyperalgesia through gating MOR expression in the injured DRG. SUV39H1 may be a potential target for the therapeutic treatment of nerve injury-induced nociceptive hypersensitivity.


Assuntos
Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Metiltransferases/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Repressoras/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Regulação para Baixo/genética , Hiperalgesia/genética , Imuno-Histoquímica , Masculino , Metiltransferases/genética , Neuralgia/genética , Traumatismos dos Nervos Periféricos/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Mol Pain ; 11: 32, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26024835

RESUMO

Chronic pain is a major public health problem with limited treatment options. Opioids remain a routine treatment for chronic pain, but extended exposure to opioid therapy can produce opioid tolerance and hyperalgesia. Although the mechanisms underlying chronic pain, opioid-induced tolerance, and opioid-induced hyperalgesia remain to be uncovered, mammalian target of rapamycin (mTOR) is involved in these disorders. The mTOR complex 1 and its triggered protein translation are required for the initiation and maintenance of chronic pain (including cancer pain) and opioid-induced tolerance/hyperalgesia. Given that mTOR inhibitors are FDA-approved drugs and an mTOR inhibitor is approved for the treatment of several cancers, these findings suggest that mTOR inhibitors will likely have multiple clinical benefits, including anticancer, antinociception/anti-cancer pain, and antitolerance/hyperalgesia. This paper compares the role of mTOR complex 1 in chronic pain, opioid-induced tolerance, and opioid-induced hyperalgesia.


Assuntos
Analgésicos Opioides/metabolismo , Dor Crônica/metabolismo , Tolerância a Medicamentos/fisiologia , Hiperalgesia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Hiperalgesia/tratamento farmacológico , Limiar da Dor/fisiologia
9.
Mol Pain ; 11: 73, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26626404

RESUMO

BACKGROUND: Chronic stress has been reported to increase basal pain sensitivity and/or exacerbate existing persistent pain. However, most surgical patients have normal physiological and psychological health status such as normal pain perception before surgery although they do experience short-term stress during pre- and post-operative periods. Whether or not this short-term stress affects persistent postsurgical pain is unclear. RESULTS: In this study, we showed that pre- or post-surgical exposure to immobilization 6 h daily for three consecutive days did not change basal responses to mechanical, thermal, or cold stimuli or peak levels of incision-induced hypersensitivity to these stimuli; however, immobilization did prolong the duration of incision-induced hypersensitivity in both male and female rats. These phenomena were also observed in post-surgical exposure to forced swimming 25 min daily for 3 consecutive days. Short-term stress induced by immobilization was demonstrated by an elevation in the level of serum corticosterone, an increase in swim immobility, and a decrease in sucrose consumption. Blocking this short-term stress via intrathecal administration of a selective glucocorticoid receptor antagonist, RU38486, or bilateral adrenalectomy significantly attenuated the prolongation of incision-induced hypersensitivity to mechanical, thermal, and cold stimuli. CONCLUSION: Our results indicate that short-term stress during the pre- or post-operative period delays postoperative pain recovery although it does not affect basal pain perception. Prevention of short-term stress may facilitate patients' recovery from postoperative pain.


Assuntos
Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Dor Pós-Operatória/fisiopatologia , Estresse Fisiológico , Estresse Psicológico , Animais , Corticosterona/sangue , Feminino , Antagonistas de Hormônios/farmacologia , Humanos , Masculino , Mifepristona/farmacologia , Modelos Animais , Ratos , Ratos Sprague-Dawley , Restrição Física
10.
Anesthesiology ; 121(2): 409-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24739997

RESUMO

Chronic pain, a common clinical symptom, is often treated inadequately or ineffectively in part due to the incomplete understanding of molecular mechanisms that initiate and maintain this disorder. Newly identified noncoding RNAs govern gene expression. Recent studies have shown that peripheral noxious stimuli drive expressional changes in noncoding RNAs and that these changes are associated with pain hypersensitivity under chronic pain conditions. This review first presents current evidence for the peripheral inflammation/nerve injury-induced change in the expression of two types of noncoding RNAs, microRNAs, and Kcna2 antisense RNA, in pain-related regions, particularly in the dorsal root ganglion. The authors then discuss how peripheral noxious stimuli induce such changes. The authors finally explore potential mechanisms of how expressional changes in dorsal root ganglion microRNAs and Kcna2 antisense RNA contribute to the development and maintenance of chronic pain. An understanding of these mechanisms may propose novel therapeutic strategies for preventing and/or treating chronic pain.


Assuntos
Dor Crônica/genética , Dor Crônica/fisiopatologia , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Canal de Potássio Kv1.2/biossíntese , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/fisiologia , MicroRNAs/biossíntese , MicroRNAs/genética , Neuralgia/genética
11.
12.
Neuron ; 105(6): 975-991.e7, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31926610

RESUMO

Alzheimer's disease (AD) displays a long asymptomatic stage before dementia. We characterize AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in the human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The altered proteins are validated in two independent cohorts, showing partial RNA dependency. Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. Combining with 5xFAD mouse analysis, we determine 15 Aß-correlated proteins (e.g., MDK, NTN1, SMOC1, SLIT2, and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic AD but exhibits activation of autophagy and interferon response and lacks human-specific deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, inflammation, complement, WNT signaling, TGF-ß and BMP signaling, lipid metabolism, iron homeostasis, and membrane transport. Some Aß-correlated proteins are colocalized with amyloid plaques. Thus, the multilayer omics approach identifies protein networks during AD progression.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Progressão da Doença , Redes e Vias Metabólicas , Proteoma/metabolismo , Proteômica , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo
13.
Proteomes ; 6(4)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424485

RESUMO

Hallmarks of Alzheimer's disease (AD), a progressive neurodegenerative disease causing dementia, include protein aggregates such as amyloid beta plaques and tau neurofibrillary tangles in a patient's brain. Understanding the complete composition and structure of protein aggregates in AD can shed light on the as-yet unidentified underlying mechanisms of AD development and progression. Biochemical isolation of aggregates coupled with mass spectrometry (MS) provides a comprehensive proteomic analysis of aggregates in AD. Dissection of these AD-specific aggregate components, such as U1 small nuclear ribonucleoprotein complex (U1 snRNP), provides novel insights into the deregulation of RNA splicing in the disease. In this review, we summarize the methodologies of laser capture microdissection (LCM) and differential extraction to analyze the aggregated proteomes in AD samples, and discuss the derived novel insights that may contribute to AD pathogenesis.

14.
Nat Commun ; 8: 14712, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28270689

RESUMO

Nerve injury induces changes in gene transcription in dorsal root ganglion (DRG) neurons, which may contribute to nerve injury-induced neuropathic pain. DNA methylation represses gene expression. Here, we report that peripheral nerve injury increases expression of the DNA methyltransferase DNMT3a in the injured DRG neurons via the activation of the transcription factor octamer transcription factor 1. Blocking this increase prevents nerve injury-induced methylation of the voltage-dependent potassium (Kv) channel subunit Kcna2 promoter region and rescues Kcna2 expression in the injured DRG and attenuates neuropathic pain. Conversely, in the absence of nerve injury, mimicking this increase reduces the Kcna2 promoter activity, diminishes Kcna2 expression, decreases Kv current, increases excitability in DRG neurons and leads to spinal cord central sensitization and neuropathic pain symptoms. These findings suggest that DNMT3a may contribute to neuropathic pain by repressing Kcna2 expression in the DRG.


Assuntos
Sensibilização do Sistema Nervoso Central/genética , DNA (Citosina-5-)-Metiltransferases/genética , Canal de Potássio Kv1.2/genética , Neuralgia/genética , Neurônios Aferentes/metabolismo , Traumatismos dos Nervos Periféricos/genética , Animais , DNA Metiltransferase 3A , Modelos Animais de Doenças , Gânglios Espinais/citologia , Regulação da Expressão Gênica , Canal de Potássio Kv1.2/metabolismo , Ligadura , Masculino , Fator 1 de Transcrição de Octâmero/genética , Ratos , Nervos Espinhais/lesões
15.
Transl Perioper Pain Med ; 1(3): 22-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27500183

RESUMO

The CRISPR/Cas9 system is a research hotspot in genome editing and regulation. Currently, it is used in genomic silencing and knock-in experiments as well as transcriptional activation and repression. This versatile system consists of two components: a guide RNA (gRNA) and a Cas9 nuclease. Recognition of a genomic DNA target is mediated through base pairing with a 20-base gRNA. The latter further recruits the Cas9 endonuclease protein to the target site and creates double-stranded breaks in the target DNA. Compared with traditional genome editing directed by DNA-binding protein domains, this short RNA-directed Cas9 endonuclease system is simple and easily programmable. Although this system may have off-target effects and in vivo delivery and immune challenges, researchers have employed this system in vivo to establish disease models, study specific gene functions under certain disease conditions, and correct genomic information for disease treatment. In regards to pain research, the CRISPR/Cas9 system may act as a novel tool in gene correction therapy for pain-associated hereditary diseases and may be a new approach for RNA-guided transcriptional activation or repression of pain-related genes. In addition, this system is also applied to loss-of-function mutations in pain-related genes and knockin of reporter genes or loxP tags at pain-related genomic loci. The CRISPR/Cas9 system will likely be carried out widely in both bench work and clinical settings in the pain field.

16.
Sci Rep ; 6: 37704, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874088

RESUMO

Nerve injury-induced downregulation of voltage-gated potassium channel subunit Kcna2 in the dorsal root ganglion (DRG) is critical for DRG neuronal excitability and neuropathic pain genesis. However, how nerve injury causes this downregulation is still elusive. Euchromatic histone-lysine N-methyltransferase 2, also known as G9a, methylates histone H3 on lysine residue 9 to predominantly produce a dynamic histone dimethylation, resulting in condensed chromatin and gene transcriptional repression. We showed here that blocking nerve injury-induced increase in G9a rescued Kcna2 mRNA and protein expression in the axotomized DRG and attenuated the development of nerve injury-induced pain hypersensitivity. Mimicking this increase decreased Kcna2 mRNA and protein expression, reduced Kv current, and increased excitability in the DRG neurons and led to spinal cord central sensitization and neuropathic pain-like symptoms. G9a mRNA is co-localized with Kcna2 mRNA in the DRG neurons. These findings indicate that G9a contributes to neuropathic pain development through epigenetic silencing of Kcna2 in the axotomized DRG.


Assuntos
Regulação para Baixo/genética , Histona-Lisina N-Metiltransferase/metabolismo , Canal de Potássio Kv1.2/genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Nervos Espinhais/lesões , Potenciais de Ação , Animais , Axotomia , Células Cultivadas , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Histonas/metabolismo , Hipersensibilidade/patologia , Hipersensibilidade/fisiopatologia , Ativação do Canal Iônico , Canal de Potássio Kv1.2/metabolismo , Ligadura , Lisina/metabolismo , Masculino , Metilação , Camundongos Endogâmicos C57BL , Neuralgia/patologia , Neuralgia/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nervos Espinhais/patologia , Nervos Espinhais/fisiopatologia
17.
Transl Perioper Pain Med ; 2(2): 8-17, 2015 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-26301256

RESUMO

Sickle cell disease (SCD), a hemoglobinopathy, causes sickling of red blood cells, resulting in vessel blockage, stroke, anemia, inflammation, and extreme pain. A vast majority of SCD patients experience pain on a chronic basis, and many turn to opioids to provide limited relief. The side effects that come with chronic opioid use push for research into understanding the specific mechanisms of SCD-associated chronic pain. Current advances in SCD-associated pain have focused on alterations in the pain pathway including nociceptor sensitization and endogenous pain inducers. This article reviews the underlying pathophysiology of SCD, potential pain mechanisms, current treatments and their mechanism of action, and future directions of SCD-associated pain management. The information provided could help propel research in SCD-associated chronic pain and uncover novel treatment options for clinicians.

18.
Epigenomics ; 7(2): 235-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942533

RESUMO

Chronic pain arising from peripheral inflammation and tissue or nerve injury is a common clinical symptom. Although intensive research on the neurobiological mechanisms of chronic pain has been carried out during previous decades, this disorder is still poorly managed by current drugs such as opioids and nonsteroidal anti-inflammatory drugs. Inflammation, tissue injury and/or nerve injury-induced changes in gene expression in sensory neurons of the dorsal root ganglion, spinal cord dorsal horn and pain-associated brain regions are thought to participate in chronic pain genesis; however, how these changes occur is still elusive. Epigenetic modifications including DNA methylation and covalent histone modifications control gene expression. Recent studies have shown that peripheral noxious stimulation changes DNA methylation and histone modifications and that these changes may be related to the induction of pain hypersensitivity under chronic pain conditions. This review summarizes the current knowledge and progress in epigenetic research in chronic pain and discusses the potential role of epigenetic modifications as therapeutic antinociceptive targets in this disorder.


Assuntos
Dor Crônica/genética , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Dor Crônica/metabolismo , Humanos
19.
Transl Perioper Pain Med ; 2(2): 27-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339682

RESUMO

Repeated and long-term administration of opioids is often accompanied by the initiation of opioid-induced analgesic tolerance and hyperalgesia in chronic pain patients. Our previous studies showed that repeated intrathecal morphine injection activated the mammalian target of rapamycin complex 1 (mTORC1) in spinal dorsal horn neurons and that blocking this activation prevented the initiation of morphine-induced tolerance and hyperalgesia in healthy rats. However, whether spinal mTORC1 is required for morphine-induced tolerance and hyperalgesia under neuropathic pain conditions remains elusive. We here observed the effect of intrathecal infusion of rapamycin, a specific mTORC1 inhibitor, on morphine-induced tolerance and hyperalgesia in a neuropathic pain model in rats induced by the fifth lumbar spinal nerve ligation (SNL). Continuous intrathecal infusion of morphine for one week starting on day 8 post-SNL led to morphine tolerance demonstrated by morphine-induced reduction in maximal possible analgesic effect (MPAE) to tail heat stimuli and ipsilateral paw withdrawal threshold (PWT) to mechanical stimuli in SNL rats. Such reduction was attenuated by co-infusion of rapamycin. Co-infusion of rapamycin also blocked morphine tolerance demonstrated by attenuation of morphine-induced reduction in MPAE in sham rats and morphine-induced hyperalgesia demonstrated by the reverse of morphine-induced reduction in PWT on both sides of sham rats and on the contralateral side of SNL rats. The results suggest that mTORC1 inhibitors could serve as promising medications for use as adjuvants with opioids in clinical neuropathic pain management.

20.
J Pain ; 16(11): 1186-99, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342649

RESUMO

UNLABELLED: Chronic sleep disturbance-induced stress is known to increase basal pain sensitivity. However, most surgical patients frequently report short-term sleep disturbance/deprivation during the pre- and postoperation periods and have normal pain perception presurgery. Whether this short-term sleep disturbance affects postsurgical pain is elusive. Here, we report that pre- or postexposure to rapid eye movement sleep disturbance (REMSD) for 6 hours daily for 3 consecutive days did not alter basal responses to mechanical, heat, and cold stimuli, but did delay recovery in incision-induced reductions in paw withdrawal threshold to mechanical stimulation and paw withdrawal latencies to heat and cold stimuli on the ipsilateral side of male or female rats. This short-term REMSD led to stress shown by an increase in swim immobility time, a decrease in sucrose consumption, and an increase in the level of corticosterone in serum. Blocking this stress via intrathecal RU38486 or bilateral adrenalectomy abolished REMSD-caused delay in recovery of incision-induced reductions in behavioral responses to mechanical, heat, and cold stimuli. Moreover, this short-term REMSD produced significant reductions in the levels of mu opioid receptor and kappa opioid receptor, but not Kv1.2, in the ipsilateral L4/5 spinal cord and dorsal root ganglia on day 9 after incision (but not after sham surgery). PERSPECTIVE: Our findings show that short-term sleep disturbance either pre- or postsurgery does not alter basal pain perception, but does exacerbate postsurgical pain hypersensitivity. The latter may be related to the reductions of mu and kappa opioid receptors in the spinal cord and dorsal root ganglia caused by REMSD plus incision. Prevention of short-term sleep disturbance may help recovery from postsurgical pain in patients.


Assuntos
Gânglios Espinais/metabolismo , Percepção da Dor/fisiologia , Dor Pós-Operatória/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Medula Espinal/metabolismo , Estresse Fisiológico/fisiologia , Animais , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Progressão da Doença , Feminino , Gânglios Espinais/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Canal de Potássio Kv1.2/metabolismo , Vértebras Lombares , Masculino , Mifepristona/farmacologia , Percepção da Dor/efeitos dos fármacos , Dor Pós-Operatória/tratamento farmacológico , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Transtornos do Sono-Vigília/tratamento farmacológico , Sono REM/fisiologia , Medula Espinal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA