RESUMO
The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.
Assuntos
Metagenoma , Microbiota , Ovinos/genética , Animais , Transcriptoma , Rúmen , Ruminantes/genéticaRESUMO
Previous studies reveal extensive genetic introgression between Ovis species, which affects genetic adaptation and morphological traits. However, the exact evolutionary scenarios underlying the hybridization between sheep and allopatric wild relatives remain unknown. To address this problem, we here integrate the reference genomes of several ovine and caprine species: domestic sheep, argali, bighorn sheep, snow sheep, and domestic goats. Additionally, we use 856 whole genomes representing 169 domestic sheep populations and their 6 wild relatives: Asiatic mouflon, urial, argali, snow sheep, thinhorn sheep and bighorn sheep. We implement a comprehensive set of analyses to test introgression among these species. We infer that the argali lineage originated ca. 3.08-3.35 Mya and hybridized with the ancestor of Pachyceriforms (e.g., bighorn sheep and snow sheep) at â¼1.56 Mya. Previous studies show apparent introgression from North American Pachyceriforms into the Bashibai sheep, a Chinese native sheep breed, despite their wide geographic separation. We show here that, in fact, the apparent introgression from the Pachyceriforms into Bashibai can be explained by the old introgression from Pachyceriforms into argali, and subsequent recent introgression from argali into Bashibai. Our results illustrate the challenges of estimating complex introgression histories and provide an example of how indirect and direct introgression can be distinguished.
RESUMO
Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.
RESUMO
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (â¼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, â¼121.2 million single nucleotide polymorphisms, â¼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.
Assuntos
Genoma , Carneiro Doméstico , Animais , Ásia , Europa (Continente) , Variação Genética , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Ovinos/genética , Carneiro Doméstico/genéticaRESUMO
How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.
Assuntos
Adaptação Biológica/genética , Resistência à Doença/genética , Introgressão Genética , Ovinos/genética , Animais , Evolução Biológica , Mudança Climática , Variação Genética , Filogeografia , Pneumonia/imunologia , Ovinos/imunologiaRESUMO
BACKGROUND: Drug-eluting stent (DES) plus drug-coated balloon (DCB) is a safe and effective treatment strategy for coronary artery bifurcation lesions, but there is no report about this strategy being used for left main (LM) bifurcation lesions. We aim to explore the efficacy and safety of DES plus DCB in the treatment of LM bifurcation lesions. METHODS: A total of 100 patients diagnosed with LM bifurcation lesions by coronary angiography were retrospectively enrolled at our center from January 2018 to December 2019. They received either a two-stent strategy or a main branch (MB) stenting plus side branch (SB) DCB strategy and were accordingly divided into the 2-DES group and the DES + DCB group. Patients treated with DES + DCB were compared with a cohort of matched patients treated with a 2-DES strategy. Clinical data was collected and quantitative coronary analysis was performed. RESULTS: For immediate postoperative angiography, though the two groups had no differences in the minimal luminal diameter (MLD) and luminal stenosis of MB, the DES + DCB group had significantly lower SB ostial MLD and a higher degree of residual lumen stenosis than the 2-DES group (P < 0.05). At the time of follow-up, the SB ostial MLD of the DES + DCB group was higher than that of the 2-DES group, but lumen stenosis, late lumen loss (LLL), and LLL at the distal end of the left MB were all smaller than those of the 2-DES group (Ps < 0.05). Furthermore, the incidence of lumen restenosis and MACE between the two groups had no significance. CONCLUSION: The combination of DES and DCB is relatively safe and effective for the treatment of LM bifurcation lesions, and this strategy seems to have advantages in reducing LLL at the SB ostium.
Assuntos
Angioplastia Coronária com Balão , Stents Farmacológicos , Preparações Farmacêuticas , Stents Farmacológicos/efeitos adversos , Humanos , Estudos Retrospectivos , StentsRESUMO
Archaeological and genetic evidence show that sheep were originally domesticated in area around the North of Zagros mountains, North-west of Iran. The Persian plateau exhibits a variety of native sheep breeds with a common characteristic of coarse-wool production. Therefore, knowledge about the genetic structure and diversity of Iranian sheep and genetic connections with other sheep breeds is of great interest. To this end, we genotyped 154 samples from 11 sheep breeds distributed across Iran with the Ovine Infinium HD SNP 600 K BeadChip array, and analyzed this dataset combined with the retrieved data of 558 samples from 19 worldwide coarse-wool sheep breeds. The average genetic diversity ranged from 0.315 to 0.354, while the FST values ranged from 0.016 to 0.177 indicating a low differentiation of Iranian sheep. Analysis of molecular variance showed that 90.21 and 9.79% of the source of variation were related to differences within and between populations, respectively. Our results indicated that the coarse-wool sheep from Europe were clearly different from those of the Asia. Accordingly, the Asiatic mouflon was positioned between Asian and European countries. In addition, we found that the genetic background of Iranian sheep is present in sheep from China and Kyrgyzstan, as well as India. The revealed admixture patterns of the Iranian sheep and other coarse-wool sheep breeds probably resulted from the expansion of nomads and through the Silk Road trade network.
Assuntos
Genética Populacional , Lã , Animais , Estruturas Genéticas , Variação Genética , Irã (Geográfico) , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Ovinos/genéticaRESUMO
Tibetan sheep are the most common and widespread domesticated animals on the Qinghai-Tibetan Plateau (QTP) and have played an essential role in the permanent human occupation of this high-altitude region. However, the precise timing, route, and process of sheep pastoralism in the QTP region remain poorly established, and little is known about the underlying genomic changes that occurred during the process. Here, we investigate the genomic variation in Tibetan sheep using whole-genome sequences, single nucleotide polymorphism arrays, mitochondrial DNA, and Y-chromosomal variants in 986 samples throughout their distribution range. We detect strong signatures of selection in genes involved in the hypoxia and ultraviolet signaling pathways (e.g., HIF-1 pathway and HBB and MITF genes) and in genes associated with morphological traits such as horn size and shape (e.g., RXFP2). We identify clear signals of argali (Ovis ammon) introgression into sympatric Tibetan sheep, covering 5.23-5.79% of their genomes. The introgressed genomic regions are enriched in genes related to oxygen transportation system, sensory perception, and morphological phenotypes, in particular the genes HBB and RXFP2 with strong signs of adaptive introgression. The spatial distribution of genomic diversity and demographic reconstruction of the history of Tibetan sheep show a stepwise pattern of colonization with their initial spread onto the QTP from its northeastern part â¼3,100 years ago, followed by further southwest expansion to the central QTP â¼1,300 years ago. Together with archeological evidence, the date and route reveal the history of human expansions on the QTP by the Tang-Bo Ancient Road during the late Holocene. Our findings contribute to a depth understanding of early pastoralism and the local adaptation of Tibetan sheep as well as the late-Holocene human occupation of the QTP.
Assuntos
Aclimatação/genética , Genoma , Migração Humana , Hibridização Genética , Ovinos/genética , Altitude , Animais , Ecótipo , Humanos , Seleção Genética , TibetRESUMO
The dipeptidyl peptidase 4 inhibitor vildagliptin (VLD), a widely used anti-diabetic drug, exerts favourable effects on vascular endothelium in diabetes. We determined for the first time the improving effects of VLD on mitochondrial dysfunction in diabetic mice and human umbilical vein endothelial cells (HUVECs) cultured under hyperglycaemic conditions, and further explored the mechanism behind the anti-diabetic activity. Mitochondrial ROS (mtROS) production was detected by fluorescent microscope and flow cytometry. Mitochondrial DNA damage and ATP synthesis were analysed by real time PCR and ATPlite assay, respectively. Mitochondrial network stained with MitoTracker Red to identify mitochondrial fragmentation was visualized under confocal microscopy. The expression levels of dynamin-related proteins (Drp1 and Fis1) were determined by immunoblotting. We found that VLD significantly reduced mtROS production and mitochondrial DNA damage, but enhanced ATP synthesis in endothelium under diabetic conditions. Moreover, VLD reduced the expression of Drp1 and Fis1, blocked Drp1 translocation into mitochondria, and blunted mitochondrial fragmentation induced by hyperglycaemia. As a result, mitochondrial dysfunction was alleviated and mitochondrial morphology was restored by VLD. Additionally, VLD promoted the phosphorylation of AMPK and its target acetyl-CoA carboxylase in the setting of high glucose, and AMPK activation led to a decreased expression and activation of Drp1. In conclusion, VLD improves endothelial mitochondrial dysfunction in diabetes, possibly through inhibiting Drp1-mediated mitochondrial fission in an AMPK-dependent manner.
Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Vildagliptina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dinaminas/antagonistas & inibidores , Dinaminas/genética , Dinaminas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/metabolismo , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
China has a rich resource of native sheep (Ovis aries) breeds associated with historical movements of several nomadic societies. However, the history of sheep and the associated nomadic societies in ancient China remains poorly understood. Here, we studied the genomic diversity of Chinese sheep using genome-wide SNPs, mitochondrial and Y-chromosomal variations in > 1,000 modern samples. Population genomic analyses combined with archeological records and historical ethnic demographics data revealed genetic signatures of the origins, secondary expansions and admixtures, of Chinese sheep thereby revealing the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Originating from the Mongolian Plateau â¼5,000â5,700 years ago, Chinese sheep were inferred to spread in the upper and middle reaches of the Yellow River â¼3,000â5,000 years ago following the expansions of the Di-Qiang people. Afterwards, sheep were then inferred to reach the Qinghai-Tibetan and Yunnan-Kweichow plateaus â¼2,000â2,600 years ago by following the north-to-southwest routes of the Di-Qiang migration. We also unveiled two subsequent waves of migrations of fat-tailed sheep into northern China, which were largely commensurate with the migrations of ancestors of Hui Muslims eastward and Mongols southward during the 12thâ13th centuries. Furthermore, we revealed signs of argali introgression into domestic sheep, extensive historical mixtures among domestic populations and strong artificial selection for tail type and other traits, reflecting various breeding strategies by nomadic societies in ancient China.
Assuntos
Filogeografia/métodos , Carneiro Doméstico/genética , Animais , Animais Domésticos/genética , Povo Asiático/genética , Cruzamento , China , DNA Mitocondrial/genética , Ásia Oriental , Variação Genética/genética , Genoma/genética , Genômica/métodos , Haplótipos , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Ovinos/genética , Migrantes , Cromossomo Y/genéticaRESUMO
Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8-9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of â¼5× for 75 samples and â¼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change.
Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Ovinos/genética , Animais , Cruzamento , Clima , Meio Ambiente , Ambientes Extremos , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Seleção Genética , Análise de Sequência de DNA/métodosRESUMO
Despite much attention, history of sheep (Ovis aries) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences (n = 3,229) across Eurasia. We inferred that O. orientalis and O. musimon share the most recent female ancestor with O. aries at approximately 0.790 Ma (95% CI: 0.637-0.934 Ma) during the Middle Pleistocene, substantially predating the domestication event (â¼8-11 ka). By reconstructing historical variations in effective population size, we found evidence of a rapid population increase approximately 20-60 ka, immediately before the Last Glacial Maximum. Analyses of lineage expansions showed two sheep migratory waves at approximately 4.5-6.8 ka (lineages A and B: â¼6.4-6.8 ka; C: â¼4.5 ka) across eastern Eurasia, which could have been influenced by prehistoric West-East commercial trade and deliberate mating of domestic and wild sheep, respectively. A continent-scale examination of lineage diversity and approximate Bayesian computation analyses indicated that the Mongolian Plateau region was a secondary center of dispersal, acting as a "transportation hub" in eastern Eurasia: Sheep from the Middle Eastern domestication center were inferred to have migrated through the Caucasus and Central Asia, and arrived in North and Southwest China (lineages A, B, and C) and the Indian subcontinent (lineages B and C) through this region. Our results provide new insights into sheep domestication, particularly with respect to origins and migrations to and from eastern Eurasia.
Assuntos
Migração Animal/fisiologia , Genômica , Mitocôndrias/genética , Ovinos/genética , Animais , Animais Domésticos/genética , DNA Mitocondrial/genética , Feminino , Variação Genética , Geografia , Metanálise como Assunto , Modelos Genéticos , Filogenia , Seleção Genética , Fatores de TempoRESUMO
Following domestication, sheep (Ovis aries) have become essential farmed animals across the world through adaptation to a diverse range of environments and varied production systems. Climate-mediated selective pressure has shaped phenotypic variation and has left genetic "footprints" in the genome of breeds raised in different agroecological zones. Unlike numerous studies that have searched for evidence of selection using only population genetics data, here, we conducted an integrated coanalysis of environmental data with single nucleotide polymorphism (SNP) variation. By examining 49,034 SNPs from 32 old, autochthonous sheep breeds that are adapted to a spectrum of different regional climates, we identified 230 SNPs with evidence for selection that is likely due to climate-mediated pressure. Among them, 189 (82%) showed significant correlation (P ≤ 0.05) between allele frequency and climatic variables in a larger set of native populations from a worldwide range of geographic areas and climates. Gene ontology analysis of genes colocated with significant SNPs identified 17 candidates related to GTPase regulator and peptide receptor activities in the biological processes of energy metabolism and endocrine and autoimmune regulation. We also observed high linkage disequilibrium and significant extended haplotype homozygosity for the core haplotype TBC1D12-CH1 of TBC1D12. The global frequency distribution of the core haplotype and allele OAR22_18929579-A showed an apparent geographic pattern and significant (P ≤ 0.05) correlations with climatic variation. Our results imply that adaptations to local climates have shaped the spatial distribution of some variants that are candidates to underpin adaptive variation in sheep.
Assuntos
Polimorfismo de Nucleotídeo Único , Carneiro Doméstico/genética , Aclimatação/genética , Animais , Cruzamento , Clima , Evolução Molecular , Frequência do Gene , Ontologia Genética , Genes , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Seleção Genética , Especificidade da EspécieRESUMO
Variation in two SNPs and one microsatellite on the Y chromosome was analyzed in a total of 663 rams representing 59 breeds from a large geographic range in northern Eurasia. SNPA-oY1 showed the highest allele frequency (91.55%) across the breeds, whereas SNPG-oY1 was present in only 56 samples. Combined genotypes established seven haplotypes (H4, H5, H6, H7, H8, H12 and H19). H6 dominated in northern Eurasia, and H8 showed the second-highest frequency. H4, which had been earlier reported to be absent in European breeds, was detected in one European breed (Swiniarka), whereas H7, which had been previously identified to be unique to European breeds, was present in two Chinese breeds (Ninglang Black and Large-tailed Han), one Buryatian (Transbaikal Finewool) and two Russian breeds (North Caucasus Mutton-Wool and Kuibyshev). H12, which had been detected only in Turkish breeds, was also found in Chinese breeds in this work. An overall low level of haplotype diversity (median h = 0.1288) was observed across the breeds with relatively higher median values in breeds from the regions neighboring the Near Eastern domestication center of sheep. H6 is the dominant haplotype in northwestern and eastern China, in which the haplotype distribution could be explained by the historical translocations of the H4 and H8 Y chromosomes to China via the Mongol invasions followed by expansions to northwestern and eastern China. Our findings extend previous results of sheep Y chromosomal genetic variability and indicate probably recent paternal gene flows between sheep breeds from distinct major geographic regions.
Assuntos
Haplótipos , Carneiro Doméstico/genética , Cromossomo Y/genética , Animais , Ásia , Europa (Continente) , Frequência do Gene , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Carneiro Doméstico/classificaçãoRESUMO
BACKGROUND: Unveiling genetic diversity features and understanding the genetic mechanisms of diverse goat phenotypes are pivotal in facilitating the preservation and utilization of these genetic resources. However, the total genetic diversity within a species can't be captured by the reference genome of a single individual. The pan-genome is a collection of all the DNA sequences that occur in a species, and it is expected to capture the total genomic diversity of the specific species. RESULTS: We constructed a goat pan-genome using map-to-pan assemble based on 813 individuals, including 723 domestic goats and 90 samples from their wild relatives, which presented a broad regional and global representation. In total, 146 Mb sequences and 974 genes were identified as absent from the reference genome (ARS1.2; GCF_001704415.2). We identified 3,190 novel single nucleotide polymorphisms (SNPs) using the pan-genome analysis. These novel SNPs could properly reveal the population structure of domestic goats and their wild relatives. Presence/absence variation (PAV) analysis revealed gene loss and intense negative selection during domestication and improvement. CONCLUSIONS: Our research highlights the importance of the goat pan-genome in capturing the missing genetic variations. It reveals the changes in genomic architecture during goat domestication and improvement, such as gene loss. This improves our understanding of the evolutionary and breeding history of goats.
RESUMO
High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.
Assuntos
Doença da Altitude , Altitude , Regulação da Expressão Gênica , Hipóxia , Animais , Doença da Altitude/genética , Doença da Altitude/metabolismo , Ovinos , Hipóxia/genética , Hipóxia/metabolismo , Humanos , Aclimatação/genética , Transcrição Gênica , Análise de Célula Única , Feminino , MultiômicaRESUMO
Mutations in the well-known Myostatin (MSTN) produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant 'double-muscle' phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.
Assuntos
Sistemas CRISPR-Cas , Fator 5 de Crescimento de Fibroblastos , Miostatina , Animais , Miostatina/genética , Miostatina/metabolismo , Ovinos , Fator 5 de Crescimento de Fibroblastos/genética , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Mutação , Técnicas de Inativação de Genes , Hiperplasia/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologiaRESUMO
In theoretical biology, a prevailing hypothesis posits a profound interconnection between effective population size (Ne), genetic diversity, inbreeding, and genetic load. The domestication and improvement processes are believed to be pivotal in diminishing genetic diversity while elevating levels of inbreeding and increasing genetic load. In this study, we performed a whole genome analysis to quantity genetic diversity, inbreeding, and genetic load across seven wild Ovis species and five domesticated sheep breeds. Our research demonstrates that the genetic load and diversity of species in the genus Ovis have no discernible impact on recent Ne, and three species within the subgenus Pachyceros tend to carry a higher genetic load and lower genetic diversity patterns. The results coincide with these species' dramatic decline in population sizes within the subgenus Pachyceros ~80-250 thousand years ago. European mouflon presented with the lowest Ne, lower genetic diversity, and higher individual inbreeding coefficient but a lower genetic load (missense and LoF). This suggests that the small Ne of European mouflon could reduce harmful mutations compared to other species within the genus Ovis. We showed lower genetic diversity in domesticated sheep than in Asiatic mouflon, but counterintuitive patterns of genetic load, i.e., lower weak genetic load (missense mutation) and no significant difference in strong genetic load (LoF mutation) between domestic sheep and Asiatic mouflon. These findings reveal that the "cost of domestication" during domestication and improvement processes reduced genetic diversity and purified weak genetic load more efficiently than wild species.
Assuntos
Domesticação , Carneiro Doméstico , Animais , Ovinos/genética , Carneiro Doméstico/genética , Densidade Demográfica , Carga Genética , MutaçãoRESUMO
Goats with diverse economic phenotypic traits play an important role in animal husbandry. However, the genetic mechanisms underlying complex phenotypic traits are unclear in goats. Genomic studies of variations provided a lens to identify functional genes. In this study, we focused on the worldwide goat breeds with outstanding traits and used whole-genome resequencing data in 361 samples from 68 breeds to detect genomic selection sweep regions. We identified 210-531 genomic regions with six phenotypic traits, respectively. Further gene annotation analysis revealed 332, 203, 164, 300, 205, and 145 candidate genes corresponding with dairy, wool, high prolificacy, poll, big ear, and white coat color traits. Some of these genes have been reported previously (e.g., KIT, KITLG, NBEA, RELL1, AHCY, and EDNRA), while we also discovered novel genes, such as STIM1, NRXN1, LEP, that may be associated with agronomic traits like poll and big ear morphology. Our study found a set of new genetic markers for genetic improvement in goats and provided novel insights into the genetic mechanisms of complex traits.
RESUMO
Sheep show characteristics of phenotypic diversity and adaptation to diverse climatic regions. Previous studies indicated associations between copy number variations (CNVs) and climate-driven adaptive evolution in humans and other domestic animals. Here, we constructed a genomic landscape of CNVs (n = 39,145) in 47 old autochthonous populations genotyped at a set of high-density (600 K) SNPs to detect environment-driven signatures of CNVs using a multivariate regression model. We found 136 deletions and 52 duplications that were significantly (Padj. < 0.05) associated with climatic variables. These climate-mediated selective CNVs are involved in functional candidate genes for heat stress and cold climate adaptation (e.g., B3GNTL1, UBE2L3, and TRAF2), coat and wool-related traits (e.g., TMEM9, STRA6, RASGRP2, and PLA2G3), repairing damaged DNA (e.g., HTT), GTPase activity (e.g., COPG), fast metabolism (e.g., LMF2 and LPIN3), fertility and reproduction (e.g., SLC19A1 and CCDC155), growth-related traits (e.g., ADRM1 and IGFALS), and immune response (e.g., BEGAIN and RNF121) in sheep. In particular, we identified significant (Padj. < 0.05) associations between probes in deleted/duplicated CNVs and solar radiation. Enrichment analysis of the gene sets among all the CNVs revealed significant (Padj. < 0.05) enriched gene ontology terms and pathways related to functions such as nucleotide, protein complex, and GTPase activity. Additionally, we observed overlapping between the CNVs and 140 known sheep QTLs. Our findings imply that CNVs can serve as genomic markers for the selection of sheep adapted to specific climatic conditions.