Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458820

RESUMO

PLA (polylactide) is a bioresorbable polymer used in implantable medical and drug delivery devices. Like other bioresorbable polymers, PLA needs to be processed carefully to avoid degradation. In this work we combine in-process temperature, pressure, and NIR spectroscopy measurements with multivariate regression methods for prediction of the mechanical strength of an extruded PLA product. The potential to use such a method as an intelligent sensor for real-time quality analysis is evaluated based on regulatory guidelines for the medical device industry. It is shown that for the predictions to be robust to processing at different times and to slight changes in the processing conditions, the fusion of both NIR and conventional process sensor data is required. Partial least squares (PLS), which is the established 'soft sensing' method in the industry, performs the best of the linear methods but demonstrates poor reliability over the full range of processing conditions. Conversely, both random forest (RF) and support vector regression (SVR) show excellent performance for all criteria when used with a prior principal component (PC) dimension reduction step. While linear methods currently dominate for soft sensing of mixture concentrations in highly conservative, regulated industries such as the medical device industry, this work indicates that nonlinear methods may outperform them in the prediction of mechanical properties from complex physicochemical sensor data. The nonlinear methods show the potential to meet industrial standards for robustness, despite the relatively small amount of training data typically available in high-value material processing.


Assuntos
Implantes Absorvíveis , Polímeros , Análise dos Mínimos Quadrados , Poliésteres , Polímeros/química , Reprodutibilidade dos Testes
2.
Polymers (Basel) ; 12(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726994

RESUMO

Poly (ether ether ketone) (PEEK) is a high-performance engineering thermoplastic polymer with potential for use in a variety of metal replacement applications due to its high strength to weight ratio. This combination of properties makes it an ideal material for use in the production of bespoke replacement parts for out-of-earth manufacturing purposes, in particular on the International Space Station (ISS). Additive manufacturing (AM) may be employed for the production of these parts, as it has enabled new fabrication pathways for articles with complex design considerations. However, AM of PEEK via fused filament fabrication (FFF) encounters significant challenges, mostly stemming from the semi crystalline nature of PEEK and its associated high melting temperature. This makes PEEK highly susceptible to changes in processing conditions which leads to a large reported variation in the literature on the final performance of PEEK. This has limited the adaption of FFF printing of PEEK in space applications where quality assurance and reproducibility are paramount. In recent years, several research studies have examined the effect of printing parameters on the performance of the 3D-printed PEEK parts. The aim of the current review is to provide comprehensive information in relation to the process-structure-property relationships in FFF 3D-printing of PEEK to provide a clear baseline to the research community and assesses its potential for space applications, including out-of-earth manufacturing.

3.
Pharmaceutics ; 12(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121578

RESUMO

: The effect of cooling on the degree of crystallinity, solid-state and dissolution properties of multi-component hot-melt extruded solid dispersions [SD] is of great interest for the successful formulation of amorphous SDs and is an area that is unreported, especially in the context of improving the stability of these specific systems. The thermal solid-state properties, degree of crystallinity, drug-polymer interactions, solubility and physical stability over time were investigated. X-ray powder diffraction [XRPD] and hyper differential scanning calorimetry [DSC] confirmed that indomethacin [INM] was converted to the amorphous state; however, the addition of poloxamer 407 [P407] had a significant effect on the degree of crystallinity and the solubility of the SD formulations. Spectroscopy studies identified the mechanism of interaction and solubility studies, showing a higher dissolution rate compared to amorphous and pure INM in pH 1.2 with a kinetic solubility of 20.63 µg/mL and 34.7 µg/mL after 3 and 24 h. XRPD confirmed that INM remained amorphous after 5 months stability testing in solid solutions with Poly(vinylpyrrolidone-co-vinyl acetate) [PVP VA64] and Plasdone S-630 [PL-S630]. Although cooling had a significant effect on the degree of crystallinity and on solubility of INM, the cooling method used did not have any significant effect on the amorphous stability of INM over time.

4.
Materials (Basel) ; 12(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195738

RESUMO

Nanocomposite-based drug delivery systems with intrinsic controlled release properties are of great interest in biomedical applications. We report a novel polylactic acid (PLA)/halloysite nanotube (HNT) nanocomposite-based drug delivery system. PLA/HNT nanocomposites have shown immense potential for use in biomedical applications due to their favorable cyto- and hemo-compatibility. The objective of this study was to evaluate the release of active pharmaceutical ingredients (API) from PLA/HNT composites matrix and the effect of preloading the API into the lumen of the HNT on its release profile. Aspirin was used in this study as a model drug as it is a common nonsteroidal anti-inflammatory and antiplatelet agent widely used for various medical conditions. These two types of drug-loaded PLA/HNT nanocomposites were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), surface wettability and mechanical testing. Statistical analysis was conducted on numerical data. Drug entrapment and in vitro drug release studies were conducted using UV spectrophotometry. Results indicate that aspirin was successfully loaded into the lumen of HNT, which resulted in the sustained release of aspirin from the nanocomposites. Furthermore, the addition of HNT into the polymer matrix increased the mechanical properties, indicating its suitability as a drug-eluting reinforcing agent.

5.
Pharmaceutics ; 11(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816898

RESUMO

The introduction of three-dimensional printing (3DP) has created exciting possibilities for the fabrication of dosage forms, paving the way for personalized medicine. In this study, oral dosage forms of two drug concentrations, namely 2.50% and 5.00%, were fabricated via stereolithography (SLA) using a novel photopolymerizable resin formulation based on a monomer mixture that, to date, has not been reported in the literature, with paracetamol and aspirin selected as model drugs. In order to produce the dosage forms, the ratio of poly(ethylene glycol) diacrylate (PEGDA) to poly(caprolactone) triol was varied with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (Irgacure TPO) utilized as the photoinitiator. The fabrication of 28 dosages in one print process was possible and the printed dosage forms were characterized for their drug release properties. It was established that both drugs displayed a sustained release over a 24-h period. The physical properties were also investigated, illustrating that SLA affords accurate printing of dosages with some statistically significant differences observed from the targeted dimensional range, indicating an area for future process improvement. The work presented in this paper demonstrates that SLA has the ability to produce small, individualized batches which may be tailored to meet patients' specific needs or provide for the localized production of pharmaceutical dosage forms.

6.
Polymers (Basel) ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373323

RESUMO

Poly-l-lactic acid (PLLA) is one of the most common bioabsorbable materials in the medical device field. However, its use in load-bearing applications is limited due to its inferior mechanical properties when compared to many of the competing metal-based permanent and bioabsorbable materials. The objective of this study was to directly compare the influence of both annealing and biaxial expansion processes to improve the material properties of PLLA. Results showed that both annealing and biaxial expansion led to an overall increase in crystallinity and that the crystallites formed during both processes were in the α' and α forms. 2D-WAXS patterns showed that the preferred orientation of crystallites formed during annealing was parallel to the circumferential direction. While biaxial expansion resulted in orientation in both axial and circumferential directions, with relatively equal sized crystals in both directions, Da (112 Å) and Dc (97 Å). The expansion process had the most profound effect on mechanical performance, with a 65% increase in Young's modulus, a 45% increase in maximum tensile stress and an 18-fold increase in strain at maximum load. These results indicate that biaxially expanding PLLA at a temperature above Tcc is possible, due to the high strain rates associated with stretch blow moulding.

7.
Int J Pharm ; 569: 118611, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31415874

RESUMO

The new frontier of medicine is the personalization of treatment to match a patient's individual needs. Fused-filament fabrication (FFF) offers a platform for the personalization of drug dosage forms, but one of its chief shortcomings compared to other tablet production methods such as dry compression and wet granulation is relatively low throughput. Conversely, injection molding (IM) is a manufacturing technique for the high-volume production of parts, but in which individual part customization is both expensive and slow requiring the modification of expensive mold tooling. Mass-customization is the manufacture of custom products that match the needs of individual consumers but which are produced at the low unit cost associated with high-volume production. We successfully integrated for the first time FFF with IM in a multi-step manufacturing process for the production of custom bilayer tablets loaded with two active pharmaceutical ingredients used in the treatment of cardiovascular disease. The FFF layer was loaded with the diuretic hydrochlorothiazide, while the IM layer was loaded with lovastatin. Infill percentage was varied for the FFF layer as a means to modify drug release. The IM injection pressure was evaluated for its effect on drug release and layer-layer adhesion. The bilayer tablets obtained offered different combinations of drug release profiles, which were governed by a combination of factors, including surface area to volume ratio; IM injection volume penetration into the FFF layer; FFF infill percentage; layer tortuosity and porosity. These different parameters could be utilized to modify the individual release of both drugs from the bilayer tablet. Thus for the first time, we have demonstrated a viable method for the mass-customization of oral tablets which could hasten the rollout of personalized medicine.


Assuntos
Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica/métodos , Administração Oral , Diuréticos/química , Liberação Controlada de Fármacos , Excipientes/química , Hidroclorotiazida/química , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Lovastatina/química
8.
Pharmaceutics ; 11(5)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109108

RESUMO

Micro-injection moulding (µIM) was used for the production of enteric tablets of plasticised and unplasticised solid dispersions of poly(vinylpyrrolidone-vinyl acetate) (PVPVA), and the effect of the mechanical and thermal treatment on the properties of the dispersions was investigated. The physical state of the systems showed to be unaltered by the µIM step, maintaining the drug in the amorphous state. The dissolution profile of the tablets showed a slower dissolution rate due to the lower surface to volume ratio compared to the extruded strands. The lack of solubility of the doses in the acidic medium as a consequence of the acidity of indomethacin (IND) was observed. However, in neutral pH the drug dissolution showed slower rates without affecting the dissolution extent, showing a potential application for the development of controlled release doses. Overall, the production of tablets of amorphous solid dispersions (ASD), coupling hot-melt extrusion (HME) and µIM, proved to be a successful approach towards a continuous automated manufacturing process to improve the aqueous solubility of poorly water-soluble drugs.

9.
Polymers (Basel) ; 11(4)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003549

RESUMO

Biodegradable polymers play a crucial role in the medical device field, with a broad range of applications such as suturing, drug delivery, tissue engineering, scaffolding, orthopaedics, and fixation devices. Poly-l-lactic acid (PLLA) is one of the most commonly used and investigated biodegradable polymers. The objective of this study was to determine the influence low shear microbore extrusion exerts on the properties of high molecular weight PLLA for medical tubing applications. Results showed that even at low shear rates there was a considerable reduction in molecular weight (Mn = 7-18%) during processing, with a further loss (Mn 11%) associated with resin drying. An increase in melt residence time from ~4 mins to ~6 mins, translated into a 12% greater reduction in molecular weight. The degradation mechanism was determined to be thermal and resulted in a ~22-fold increase in residual monomer. The differences in molecular weight between both batches had no effect on the materials thermal or morphological properties. However, it did affect its mechanical properties, with a significant impact on tensile strength and modulus. Interestingly there was no effect on the elongational proprieties of the tubing. There was also an observed temperature-dependence of mechanical properties below the glass transition temperature.

10.
Int J Pharm ; 558: 328-340, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30659922

RESUMO

Oral tablets are a convenient form to deliver active pharmaceutical ingredients (API) and have a high level of acceptance from clinicians and patients. There is a wide range of excipients available for the fabrication of tablets thereby offering a versatile platform for the delivery of therapeutic agents to the gastrointestinal tract. However, the geometry of tablets is limited by conventional manufacturing processes. This study aimed to compare three manufacturing processes in the production of flat-faced oral tablets using the same formulation composed of a polymer blend and caffeine as a model drug: fused-filament fabrication (FFF), direct compression (DC) and injection molding (IM). Hot-melt extrusion was used to convert a powder blend into feedstock material for FFF and IM processes, while DC was performed on the powder mixture. Tablets were produced with the same dimensions and were characterized for their physical and dissolution properties. There were statistical differences in the physical properties and drug release profiles of the tablets produced by the different manufacturing processes. DC tablets displayed immediate release, IM provided sustained release over 48 h, and FFF tablets displayed both release types depending on the printing parameters. FFF continues to demonstrate high potential as a manufacturing process for the efficient production of personalized oral tablets.


Assuntos
Comprimidos/química , Tecnologia Farmacêutica/métodos , Administração Oral , Cafeína/química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Excipientes/química , Polímeros/química
11.
Eur J Pharm Biopharm ; 69(3): 1147-59, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18502627

RESUMO

Hydrogel based devices belong to the group of swelling controlled drug delivery systems. Temperature responsive poly(N-isopropylacrylamide)-poly(vinylpyrrolidinone) random copolymers were produced by free radical polymerisation, using 1-hydroxycyclohexylphenyketone as an ultraviolet-light sensitive initiator, and poly(ethylene glycol) dimethacrylate as the crosslinking agent (where appropriate). The hydrogels were synthesised to have lower critical solution temperatures (LCST) near body temperature, which is favourable particularly for 'smart' drug delivery applications. Two model drugs (diclofenac sodium and procaine HCl) were entrapped within these xerogels, by incorporating the active agents prior to photopolymerisation. The properties of the placebo samples were contrasted with the drug-loaded copolymers at low levels of drug integration. Modulated differential scanning calorimetry (MDSC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM) were used to investigate the influence of the drugs incorporated on the solid-state properties of the xerogels. MDSC and swelling studies were carried out to ascertain their effects on the LCST and swelling behaviour of the hydrated samples. In all cases, drug dissolution analysis showed that the active agent was released at a slower rate at temperatures above the phase transition temperature. Finally, preliminary in vitro cytotoxicity evaluations were performed to establish the toxicological pattern of the gels.


Assuntos
Preparações de Ação Retardada/química , Hidrogéis/química , Acrilamidas , Resinas Acrílicas , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas , Diclofenaco/administração & dosagem , Diclofenaco/química , Humanos , Hidrogéis/toxicidade , Polímeros , Povidona , Procaína/administração & dosagem , Procaína/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Sais de Tetrazólio , Tiazóis , Raios Ultravioleta
12.
Int J Pharm ; 351(1-2): 201-8, 2008 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-18036753

RESUMO

The body of work described in this research paper outlines the use of PEO/PCL blends in the production of monolithic matrices for oral drug delivery. Several batches of matrix material were prepared with carvedilol used as the active pharmaceutical ingredient. The matrices were prepared using various extrusion parameters to investigate the effect of screw speed and barrel temperature on the properties of the drug delivery devices. The resultant extrudate was characterised using steady state parallel plate rheometry, differential scanning calorimetry (DSC) and dissolution testing. Higher screw speeds were observed to result in slightly lower matrix melt viscosity when compared with matrices compounded using lower screw speeds. Dissolution testing showed that the incorporation of the hydrophobic PCL polymer into a PEO matrix results in a retarded drug release profile.


Assuntos
Carbazóis/química , Poliésteres/química , Propanolaminas/química , Tecnologia Farmacêutica/métodos , Administração Oral , Varredura Diferencial de Calorimetria , Carbazóis/administração & dosagem , Carvedilol , Preparações de Ação Retardada , Propanolaminas/administração & dosagem , Reologia , Solubilidade , Temperatura
13.
Int J Pharm ; 549(1-2): 50-57, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30016675

RESUMO

The investigation of the miscibility between active pharmaceutical ingredients (API's) and polymeric excipients is of great interest for the formulation and development of amorphous solid dispersions, especially in the context of the prediction of the stability of these systems. Two different methods were applied to determine the miscibility between model compounds poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) and indomethacin (IND), viz. the measurement of the glass transition temperature (Tg) and the melting point depression method framed on the Flory-Huggins theory. Measurement of the glass transition temperatures of the binary blends showed the formation of an amorphous single phase system between the PVPVA and the IND regardless of the composition. Variation of Tg with the composition was well described by the Gordon-Taylor equation leading to the error of concluding lack of intermolecular interactions between the materials. Application of the Brostow-Chiu-Kalogeras-Vassilikou-Dova (BCKV) model shows a negative interaction parameter (a0) suggesting the presence of drug-drug intermolecular interactions. Application of the melting point depression method within the framework of the Flory-Huggins theory proved the miscibility of the system at temperatures close to the melting point of IND.


Assuntos
Química Farmacêutica/métodos , Excipientes/química , Indometacina/química , Pirrolidinas/química , Compostos de Vinila/química , Estabilidade de Medicamentos , Modelos Químicos , Transição de Fase , Solubilidade , Temperatura , Temperatura de Transição
14.
Pharmaceutics ; 10(2)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614811

RESUMO

Material choice is a fundamental consideration when it comes to designing a solid dosage form. The matrix material will ultimately determine the rate of drug release since the physical properties (solubility, viscosity, and more) of the material control both fluid ingress and disintegration of the dosage form. The bulk properties (powder flow, concentration, and more) of the material should also be considered since these properties will influence the ability of the material to be successfully manufactured. Furthermore, there is a limited number of approved materials for the production of solid dosage forms. The present study details the complications that can arise when adopting pharmaceutical grade polymers for fused-filament fabrication in the production of oral tablets. The paper also presents ways to overcome each issue. Fused-filament fabrication is a hot-melt extrusion-based 3D printing process. The paper describes the problems encountered in fused-filament fabrication with Kollidon® VA64, which is a material that has previously been utilized in direct compression and hot-melt extrusion processes. Formulation and melt-blending strategies were employed to increase the printability of the material. The paper defines for the first time the essential parameter profile required for successful 3D printing and lists several pre-screening tools that should be employed to guide future material formulation for the fused-filament fabrication of solid dosage forms.

15.
Int J Pharm ; 329(1-2): 62-71, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17010544

RESUMO

The use of supercritical fluids as plasticisers in polymer processing has been well documented. The body of work described in this research paper outlines the use of a supercritical CO(2) assisted extrusion process in the preparation of a hot melt extruded monolithic polymer matrix for oral drug delivery. Several batches of matrix material were prepared with Carvedilol used as the active pharmaceutical ingredient (API). These batches were subsequently extruded both with and without supercritical CO(2) incorporation. The resultant matrices were characterised using steady-state parallel plate rheometry, differential scanning calorimetry (DSC), atomic force microscopy (AFM), micro-thermal analysis (microTA) and dissolution testing. Dissolution analysis showed that the use of supercritical CO(2) during the extrusion process resulted in a faster dissolution of API when compared with unassisted extrusion. The supercritical CO(2) incorporation also resulted in reduced viscosity during processing, therefore allowing for quicker throughput and productivity. The results detailed within this paper indicate that supercritical fluid assisted hot melt extrusion is a viable enhancement to conventional hot melt extrusion for the production of monolithic dosage forms.


Assuntos
Dióxido de Carbono , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Plastificantes , Polietilenoglicóis , Administração Oral , Temperatura Alta
16.
Mater Sci Eng C Mater Biol Appl ; 79: 130-139, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28628999

RESUMO

Poly (N-vinylcaprolactam) (PNVCL) is a polymer which offers superior characteristics for various potential medical device applications. In particular it offers unique thermoresponsive capabilities, which fulfils the material technology constraints required in targeted drug delivery applications. PNVCL phase transitions can be tailored in order to suit the requirements of current and next generation devices, by modifying the contents with regard to the material composition and aqueous polymer concentration. In this study, physically crosslinked Poly (N-vinylcaprolactam)-Vinyl acetate (PNVCL-VAc) copolymers were prepared by photopolymerisation. The structure of the polymers was established by Fourier transform infrared spectroscopy, nuclear magnetic resonance and gel permeation chromatography. The polymers were further characterised using differential scanning calorimetry and swelling studies. Determination of the LCST of the polymers in aqueous solution was achieved by employing four techniques; cloud point, UV-spectrometry, differential scanning calorimetry and rheometry. Sol-gel transition was established using tube inversion method and rheological analysis. This study was conducted to determine the characteristics of PNVCL with the addition of VAc, and to establish the effects on the phase transition. The PNVCL based polymers exhibited a decrease in the LCST as the composition of VAc increased. Sol-gel transition could be controlled by altering the monomeric feed ratio and polymer concentration in aqueous milieu. Importantly all copolymers (10wt% in solution) underwent gelation between 33.6 and 35.9°C, and based on this and the other materials properties recorded in this study, these novel copolymers have potential for use as injectable in situ forming drug delivery systems for targeted drug delivery.


Assuntos
Caprolactama/análogos & derivados , Polímeros/química , Varredura Diferencial de Calorimetria , Caprolactama/química , Reagentes de Ligações Cruzadas , Sistemas de Liberação de Medicamentos , Transição de Fase , Temperatura
17.
Eur J Pharm Biopharm ; 64(1): 75-81, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16697170

RESUMO

The use of filler materials in an extended release monolithic polymer matrix can lead to a vastly altered release profile for the active pharmaceutical ingredient. A range of excipients for use in monolithic matrices have been discussed in the literature. The body of work described in this research paper outlines the use of agar as a novel filler material in a hot melt extruded polymer matrix. Several batches of matrix material were prepared with Diclofenac sodium used as the active pharmaceutical ingredient (API). Agar and microcrystalline cellulose were used as the filler materials in varying ratios, to examine the effect of % filler content as well as filler type on the properties of the hot melt extruded matrix. The resultant extrudates were characterised using steady state parallel plate rheometry, differential scanning calorimetry (DSC) and dissolution testing. The rheometry analysis concluded that the fillers used resulted in an increase in the matrix viscosity. The DSC scans obtained showed negligible effects on the melting behavior of the matrix as a result of the filler inclusion. Dissolution analysis showed that the presence of the fillers resulted in a slower release rate of API than for the matrix alone. The results detailed within this paper indicate that agar is a viable filler for extended release hot melt produced dosage forms.


Assuntos
Ágar/química , Química Farmacêutica/métodos , Diclofenaco/farmacologia , Sistemas de Liberação de Medicamentos , Tecnologia Farmacêutica/métodos , Varredura Diferencial de Calorimetria , Preparações de Ação Retardada , Portadores de Fármacos , Composição de Medicamentos , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Solubilidade , Temperatura , Fatores de Tempo
18.
Int J Pharm ; 326(1-2): 50-9, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16926073

RESUMO

Copolymers of N-vinylpyrrolidinone and acrylic acid, crosslinked with ethylene glycol dimethacrylate and polyethylene glycol 600 dimethacrylate were prepared by UV-polymerisation. These polymers were analysed for their extractable content by Soxhlet extraction of the samples at 100 degrees C for 72 h. Aspirin and paracetamol were incorporated into the polymer structure at 25 wt.% during the curing process and their presence confirmed by Fourier transform infrared spectroscopy. It was found that the release rate of the drug from the polymer matrix was dependent on intermolecular bonding between the polymer and active agent with aspirin being released slower than paracetamol in all cases. Results showed that paracetamol was completely released after 24h whereas complete release of aspirin took up to 70 h. Finally preliminary in vitro biocompatibility testing was performed for crosslinked polyvinylpyrrolidinone, by determining human hepatoma HepG2 cell viability in the MTT assay and DNA damage in the comet assay following direct contact with various concentrations of polyvinylpyrrolidinone-containing media. Cytotoxicity data suggests a dose-dependent effect for both crosslinkers, with concentrations in the range 0.025-2.5 mg ml(-1) showing a marginal decrease in viability to, at most, 70% that of untreated cells. Again DNA migration in the comet assay following short-term exposure to EGDMA crosslinked hydrogels correlates with MTT data.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Hidrogéis/química , Polímeros/química , Polivinil/química , Pirrolidinonas/química , Acetaminofen/química , Aspirina/química , Sobrevivência Celular , Química/métodos , Ensaio Cometa , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
19.
J Tissue Eng Regen Med ; 6(4): 280-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21706775

RESUMO

It is desirable to produce cryopreservable cell-laden tissue-engineering scaffolds whose final properties can be adjusted during the thawing process immediately prior to use. Polyvinyl alcohol (PVA)-based solutions provide platforms in which cryoprotected cell suspensions can be turned into a ready-to-use, cell-laden scaffold by a process of cryogelation. In this study, such a PVA system, with DMSO as the cryoprotectant, was successfully developed. Vascular smooth muscle cell (vSMC)-encapsulated cryogels were investigated under conditions of cyclic strain and in co-culture with vascular endothelial cells to mimic the environment these cells experience in vivo in a vascular tissue-engineering setting. In view of the cytotoxicity DMSO imposes with respect to the production procedure, carboxylated poly-L-lysine (COOH-PLL) was substituted as a non-cytotoxic cryoprotectant to allow longer, slower thawing periods to generate more stable cryogels. Encapsulated vSMC with DMSO as a cryoprotectant responded to 10% cyclic strain with increased alignment and proliferation. Cells were stored frozen for 1 month without loss of viability compared to immediate thawing. SMC-encapsulated cryogels also successfully supported functional endothelial cell co-culture. Substitution of COOH-PLL in place of DMSO resulted in a significant increase in cell viability in encapsulated cryogels for a range of thawing periods. We conclude that incorporation of COOH-PLL during cryogelation preserved cell functionality while retaining fundamental cryogel physical properties, thereby making it a promising platform for tissue-engineering scaffolds, particularly for vascular tissue engineering, or cell preservation within microgels.


Assuntos
Criogéis/farmacologia , Criopreservação/métodos , Crioprotetores/farmacologia , Gelatina/farmacologia , Miócitos de Músculo Liso/citologia , Polilisina/análogos & derivados , Polilisina/farmacologia , Álcool de Polivinil/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Teste de Materiais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Mecânico , Resistência à Tração/efeitos dos fármacos
20.
J Mech Behav Biomed Mater ; 2(5): 485-93, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19627855

RESUMO

Numerous authors have reported on hydrogel technologies providing products suitable for applications in biomedical, personal care as well as in nano-sensor applications. Hydrogels fabricated from single polymers have been extensively investigated. However, in many cases a single polymer alone cannot meet divergent demands in terms of both properties and performance. In this work, hydrogels were prepared by physically blending the natural polymer agar with polyvinyl alcohol in varying ratios to produce a new biosynthetic polymer applicable for a variety of purposes. Hydrogen bonding was observed to take place between the polyvinyl alcohol and the agar molecules in the composite materials leading to changes in the thermal, mechanical and swelling characteristics of the composite hydrogels. The composite hydrogels exhibited a slightly higher melting temperature than pure agar (116.81 degrees C). Irreversible compressive damage was found to occur at lower strain levels during compression testing of the dehydrated samples consisting of higher PVOH concentrations. Rheological analysis of hydrated sample revealed G' values of between 5000 and 10,000 Pa for the composite blends, with gels containing higher PVOH percentages exhibiting poorer mechanical strength.


Assuntos
Ágar/química , Hidrogéis/química , Álcool de Polivinil/química , Varredura Diferencial de Calorimetria , Força Compressiva , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA