Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374700

RESUMO

The three-body coupling grinding mode of a ball ensures the batch diameter variation and batch consistency of precision ball machining based on the principle of ball forming, resulting in a structure that is simply and feasibly controllable. The change in the rotation angle can be jointly determined using the fixed load of the upper grinding disc and the rotation speed coordination of the inner and outer discs of the lower grinding disc. Related to this, the rotation speed is an important index to guarantee grinding uniformity. To ensure the quality of three-body coupling grinding, this study aims to establish the best mathematical control model of the rotation speed curve of the inner and outer discs in the lower grinding disc. Specifically, it includes two aspects. First, the optimization of the rotation speed curve was mainly studied, and the machining process was simulated with three speed curve combinations: 1, 2, and 3. By analyzing the evaluation index of ball grinding uniformity, the results revealed that the third speed curve combination had the best grinding uniformity, and the three speed curve combinations were optimized on the basis of the traditional triangular wave speed curve. Furthermore, the obtained double trapezoidal speed curve combination not only achieved the traditionally verified stability performance but also overcame the shortcomings of the other speed curves. The mathematical model established in this way was equipped with a grinding control system, which improved the fine control ability of the rotation angle state of the ball blank under the three-body coupling grinding mode. It also obtained the best grinding uniformity and sphericity and laid a theoretical foundation for achieving a grinding effect that was close to the ideal circumstance during mass production. Second, via theoretical comparison and analysis, it was determined that the ball shape and sphericity deviation (SPD) were more accurate than the standard deviation (STD) of the two-dimensional trajectory point distribution. The SPD evaluation method was also investigated via the optimization analysis of the rotation speed curve by means of the ADAMAS simulation. The obtained results coincided with the STD evaluation trend, thus laying a preliminary foundation for subsequent applications.

2.
Materials (Basel) ; 16(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049007

RESUMO

The friction and wear performance of high-performance bearings directly affects the accuracy and maneuverability of weapons and equipment. In this study, high-speed, high-temperature, and heavy-load durability experiments of weapon bearings were carried out, and their wear properties (i.e., surface wear, metamorphic layer, scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), residual stress, and retained austenite) were analyzed in multiple dimensions. The results showed the following: (1) The experimental temperature of the serviced front-end bearing is always lower than that of the rear bearing. (2) The metamorphic layer of the serviced rear bearing (i.e., inner ring, outer ring, rolling body, and cage) > the metamorphic layer of the serviced front-end bearing > the metamorphic layer of the unserviced bearing. (3) The rolling body of the rear bearing at high experimental temperatures contains not only elemental O, but also elemental P and Sr. (4) In the EDS analysis of the rolling elements, with the migration from the "ball edge" to the "ball center", the elemental C in the rolling elements of serviced or unserviced bearings decreases slowly, while the elemental Fe content increases slowly.

3.
Micromachines (Basel) ; 15(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38258175

RESUMO

A diamond gel polishing disk with self-sharpening ability is proposed to solve the problem of glazing phenomenon in the gel polishing disks. Aluminum nitride (AlN) powder with silica sol film coating (A/S powder) is added to the polishing disk, and a specific solution is used to dissolve the A/S powder during polishing, forming a pore structure on the polishing disk. To realize the self-sharpening process, the dissolution property of the A/S powder is analyzed. The effect of A/S powder content on the friction and wear performance and the polishing performance of 4H-SiC wafers are investigated. Results showed that the friction coefficient of the polishing disk with 9 wt% A/S powder content is the most stable. The surface roughness Ra of 2.25 nm can be achieved, and there is no obvious glazing phenomenon on the polishing disk after polishing. The surface roughness of the 4H-SiC wafer is reduced by 38.8% compared with that of the polishing disk with no A/S powder addition after rough polishing, and the 4H-SiC wafer then obtained a damage-free surface with a Ra less than 0.4 nm after fine polishing by chemical mechanical polishing (CMP).

4.
Micromachines (Basel) ; 14(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36838082

RESUMO

To improve the ultrasonic energy and realize far-field ultrasonic abrasive machining of complex surfaces, a spherical-array-focused ultrasonic abrasive machining system was established. By combining ultrasonic field simulation, detection and a single-factor experiment, the influences of the ultrasonic generator current, abrasive concentration, and particle size on the material removal properties and surface quality evolution of quartz glass were investigated. When the current was less than 0.4 A, the material removal showed plastic removal at the nanoscale. When the current was more than 0.5 A, the cavitation phenomenon formed micron-scale impact removal traces on the workpiece surface. The increase in abrasive concentration increased the impact density and material removal rate, while excessive abrasive concentration increased the impeding effect between abrasive particles and reduced the material removal rate. Moreover, the increase in abrasive particle concentration enhanced heterogeneous cavitation nucleation, promoted the removal of abrasive impact materials under the action of a cavitation jet, and inhibited the removal of direct surface cavitation. The abrasive particle size affects the heterogeneous cavitation nucleation and the acceleration of the cavitation jet on abrasive particles, which affects the material removal rate and surface quality. By controlling the energy of the focused ultrasound and abrasive parameters, the plastic or brittle domain removal of quartz glass can be achieved at the micro- and nanoscales.

5.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421085

RESUMO

In this study, shear rheological polishing was used to polish the Si surface of six-inch 4H-SiC wafers to improve polishing efficiency. The surface roughness of the Si surface was the main evaluation index, and the material removal rate was the secondary evaluation index. An experiment was designed using the Taguchi method to analyze the effects of four critical parameters (abrasive particle size, abrasive particle concentration, polishing speed, and polishing pressure) on the Si surface polishing of SiC wafers. By evaluating the experimental results for the signal-to-noise ratio, the weight of each factor was calculated using the analysis of variance method. The optimal combination of the process parameters was obtained. Below are the weightings for the influence of each process on the polishing result. A higher value for the percentage means that the process has a greater influence on the polishing result. The wear particle size (85.98%) had the most significant influence on the surface roughness, followed by the polishing pressure (9.45%) and abrasive concentration (3.25%). The polishing speed had the least significant effect on the surface roughness (1.32%). Polishing was conducted under optimized process conditions of a 1.5 µm abrasive particle size, 3% abrasive particle concentration, 80 r/min polishing speed, and 20 kg polishing pressure. After polishing for 60 min, the surface roughness, Ra, decreased from 114.8 to 0.9 nm, with a change rate of 99.2%. After further polishing for 60 min, an ultrasmooth surface with an Ra of 0.5 nm and MRR of 20.83 nm/min was obtained. Machining the Si surface of 4H-SiC wafers under optimal polishing conditions can effectively remove scratches on the Si surface of 4H-SiC wafers and improve the surface quality.

6.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421086

RESUMO

A self-excited oscillating pulsed abrasive water jet polishing method is proposed to solve the problems of low removal efficiency in traditional abrasive water jet polishing and the influence of an external flow field on the material surface removal rate. The self-excited oscillating chamber of the nozzle was used to generate pulsed water jets to reduce the impact of the jet stagnation zone on material surface removal and increase the jet speed to improve processing efficiency. ANSYS Fluent was employed to simulate the processing flow field characteristics for different lengths of oscillation cavities. The simulation results indicate that the velocity of the jet shaft reached a maximum of 178.26 m/s when the length of the oscillation cavity was 4 mm. The erosion rate of the material is linear with the processing angle. A nozzle with a length of 4 mm of the self-excited oscillating cavity was fabricated for SiC surface polishing experiments. The results were compared with those of ordinary abrasive water jet polishing. The experimental results showed that the self-excited oscillation pulse fluid enhanced the erosion ability of the abrasive water jet on the SiC surface and significantly improved the material-removal depth of the abrasive water jet polishing SiC. The maximum surface erosion depth can be increased by 26 µm.

7.
Micromachines (Basel) ; 13(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295984

RESUMO

Reasonable cutting edge preparation can eliminate microscopic defects and improve the performance of a cutting tool. The flexible fiber-assisted shear thickening polishing method was used for the preparation of cemented carbide insert cutting edge. The influences of the polishing angle and polishing speed on the cutting edge preparation process were investigated, and the cutting edge radius and K-factor were employed as evaluation indexes to evaluate the edge shape. A prediction model of the cutting edge radius was also established using the mathematical regression method. The results show that the polishing angle has a more significant effect on the cutting edge radius. The cutting edge preparation efficiency is the highest under the polishing angle of 10°, and the cutting edge radius increased from the 15 ± 2 µm to 110 ± 5 µm in 5 min. The cutting edge shape can be controlled by adjusting the polishing angle, and the K-factor varies from 0.14 ± 0.03 to 0.56 ± 0.05 under the polishing angle (from -20° to 20°). The polishing speed has a less effect on the cutting edge radius and shape, but increasing the polishing speed within a certain range can improve the efficiency of cutting edge preparation. The flank face roughness decreased from the initial Ra 163.1 ± 10 nm to Ra 5.2 ± 2 nm at the polishing angle of -20°, which is the best polishing angle for the flank face surface roughness. The ANOVA method was employed to evaluate the effective weight of the polishing angle and polishing speed on preparation efficiency. The polishing angle (86.79%) has the more significant influence than polishing speed (13.21%) on the cutting edge preparation efficiency. The mathematical regression method was used to establish the model of the prediction of the cutting edge radius with polishing angle and speed, and the models were proved rationally. The results indicate that the FF-STP is an effective method for the high consistency preparation of cemented carbide insert cutting edge.

8.
Micromachines (Basel) ; 13(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630229

RESUMO

In order to obtain tungsten with great surface qualities and high polishing efficiency, a novel method of chemical enhanced shear dilatancy polishing (C-SDP) was proposed. The effects of pH values and H2O2 concentrations on the polishing performance of tungsten C-SDP were studied. In addition, the corrosion behaviors of tungsten in solutions with different pH values and H2O2 concentrations were analyzed by electrochemical experiments, and the valence states of elements on the tungsten surface were analyzed by XPS. The results showed that both pH values and H2O2 concentrations had significant effects on tungsten C-SDP. With the pH values increasing from 7 to 12, the MRR increased from 6.69 µm/h to 13.67 µm/h. The optimal surface quality was obtained at pH = 9, the surface roughness (Ra) reached 2.35 nm, and the corresponding MRR was 9.71 µm/h. The MRR increased from 9.71 µm/h to 34.95 µm/h with the H2O2 concentrations increasing from 0 to 2 vol.%. When the concentration of H2O2 was 1 vol.%, the Ra of tungsten reached the lowest value, which was 1.87 nm, and the MRR was 26.46 µm/h. This reveals that C-SDP technology is a novel ultra-precision machining method that can achieve great surface qualities and polishing efficiency of tungsten.

9.
Micromachines (Basel) ; 12(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34442578

RESUMO

Quartz glass is a typical optical material. In this research, colloidal silica (SiO2) and colloidal cerium oxide (CeO2) are used as abrasive grains to polish quartz glass in the shear thickening polishing (STP) process. The STP method employs the shear-thickening mechanism of non-Newtonian power-law fluid to achieve high-efficiency and high-quality polishing. The different performance in material removal and surface roughness between SiO2 and CeO2 slurries was analyzed. The influence of the main factors including polishing speed, abrasive concentration, and pH value on the MRR, workpiece surface roughness, and the surface topography was discussed. Two different slurries can both achieve fine quartz surface in shear thickening polishing with the polishing speed 100 rpm, and pH value 8. The quartz glass surface roughness Ra decreases from 120 ± 10 to 2.3 nm in 14 minutes' polishing with 8 wt% 80 nm SiO2 slurry, and the MRR reaches 121.6 nm/min. The quartz glass surface roughness Ra decreases from 120 ± 10 to 2.1 nm in 12 minutes polishing by 6 wt% 100 nm CeO2 slurry and the MRR reaches 126.2 nm/min.

10.
Micromachines (Basel) ; 11(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781686

RESUMO

Double-sides polishing technology has the advantages of high flatness and parallelism, and high polishing efficiency. It is the preferred polishing method for the preparation of ultra-thin sapphire wafer. However, the clamping method is a fundamental problem which is currently difficult to solve. In this paper, a layer stacked clamping (LSC) method of ultra-thin sapphire wafer which was used on double-sides processing was proposed and the clamping mechanism of layer stacked clamping (LSC) was studied. Based on the rough surface contact model of fractal theory, combining the theory of van der Waals force and capillary force, the adhesion model of the rough surfaces was constructed, and the reliability of the model was verified through experiments. Research has found that after displacement between the two surfaces the main force of the adhesion force is capillary force. The capillary force decreases with the increasing of surface roughness, droplet volume, and contact angle. For an ultra-thin sapphire wafer with a diameter of 50.8 mm and a thickness of 0.17 mm, more than 1.4 N of normal adhesion force can be generated through the LSC method. Through the double-sides polishing experiment using the LSC method, an ultra-thin sapphire wafer with an average surface roughness (Ra) of 1.52 nm and a flatness (PV) of 0.968 µm was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA