Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(13): 5995-6000, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850525

RESUMO

Clustering is concerned with coherently grouping observations without any explicit concept of true groupings. Spectral graph clustering-clustering the vertices of a graph based on their spectral embedding-is commonly approached via K-means (or, more generally, Gaussian mixture model) clustering composed with either Laplacian spectral embedding (LSE) or adjacency spectral embedding (ASE). Recent theoretical results provide deeper understanding of the problem and solutions and lead us to a "two-truths" LSE vs. ASE spectral graph clustering phenomenon convincingly illustrated here via a diffusion MRI connectome dataset: The different embedding methods yield different clustering results, with LSE capturing left hemisphere/right hemisphere affinity structure and ASE capturing gray matter/white matter core-periphery structure.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37645242

RESUMO

Spectral inference on multiple networks is a rapidly-developing subfield of graph statistics. Recent work has demonstrated that joint, or simultaneous, spectral embedding of multiple independent networks can deliver more accurate estimation than individual spectral decompositions of those same networks. Such inference procedures typically rely heavily on independence assumptions across the multiple network realizations, and even in this case, little attention has been paid to the induced network correlation that can be a consequence of such joint embeddings. In this paper, we present a generalized omnibus embedding methodology and we provide a detailed analysis of this embedding across both independent and correlated networks, the latter of which significantly extends the reach of such procedures, and we describe how this omnibus embedding can itself induce correlation. This leads us to distinguish between inherent correlation-that is, the correlation that arises naturally in multisample network data-and induced correlation, which is an artifice of the joint embedding methodology. We show that the generalized omnibus embedding procedure is flexible and robust, and we prove both consistency and a central limit theorem for the embedded points. We examine how induced and inherent correlation can impact inference for network time series data, and we provide network analogues of classical questions such as the effective sample size for more generally correlated data. Further, we show how an appropriately calibrated generalized omnibus embedding can detect changes in real biological networks that previous embedding procedures could not discern, confirming that the effect of inherent and induced correlation can be subtle and transformative. By allowing for and deconstructing both forms of correlation, our methodology widens the scope of spectral techniques for network inference, with import in theory and practice.

3.
IEEE Trans Netw Sci Eng ; 8(4): 3019-3033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35224127

RESUMO

Graph matching consists of aligning the vertices of two unlabeled graphs in order to maximize the shared structure across networks; when the graphs are unipartite, this is commonly formulated as minimizing their edge disagreements. In this paper we address the common setting in which one of the graphs to match is a bipartite network and one is unipartite. Commonly, the bipartite networks are collapsed or projected into a unipartite graph, and graph matching proceeds as in the classical setting. This potentially leads to noisy edge estimates and loss of information. We formulate the graph matching problem between a bipartite and a unipartite graph using an undirected graphical model, and introduce methods to find the alignment with this model without collapsing. We theoretically demonstrate that our methodology is consistent, and provide non-asymptotic conditions that ensure exact recovery of the matching solution. In simulations and real data examples, we show how our methods can result in a more accurate matching than the naive approach of transforming the bipartite networks into unipartite, and we demonstrate the performance gains achieved by our method in simulated and real data networks, including a co-authorship-citation network pair, and brain structural and functional data.

4.
Inf inference ; 9(4): 749-783, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33343893

RESUMO

We consider the problem of graph matchability in non-identically distributed networks. In a general class of edge-independent networks, we demonstrate that graph matchability can be lost with high probability when matching the networks directly. We further demonstrate that under mild model assumptions, matchability is almost perfectly recovered by centering the networks using universal singular value thresholding before matching. These theoretical results are then demonstrated in both real and synthetic simulation settings. We also recover analogous core-matchability results in a very general core-junk network model, wherein some vertices do not correspond between the graph pair.

5.
IEEE Trans Pattern Anal Mach Intell ; 42(11): 2887-2900, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31059426

RESUMO

The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Animais , Encéfalo/diagnóstico por imagem , Conectoma , Imagem de Tensor de Difusão , Drosophila , Humanos
6.
Worm ; 5(2): e1142041, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386164

RESUMO

We investigate joint graph inference for the chemical and electrical connectomes of the Caenorhabditis elegans roundworm. The C. elegans connectomes consist of [Formula: see text] non-isolated neurons with known functional attributes, and there are two types of synaptic connectomes, resulting in a pair of graphs. We formulate our joint graph inference from the perspectives of seeded graph matching and joint vertex classification. Our results suggest that connectomic inference should proceed in the joint space of the two connectomes, which has significant neuroscientific implications.

7.
IEEE Trans Pattern Anal Mach Intell ; 38(1): 60-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656578

RESUMO

Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.


Assuntos
Algoritmos , Gráficos por Computador , Reconhecimento Automatizado de Padrão/métodos , Animais , Inteligência Artificial , Distribuição Binomial , Mapeamento Encefálico/estatística & dados numéricos , Caenorhabditis elegans/fisiologia , Simulação por Computador , Imagem de Tensor de Difusão/estatística & dados numéricos , Humanos , Conceitos Matemáticos , Modelos Neurológicos , Modelos Estatísticos
8.
PLoS One ; 10(4): e0121002, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25886624

RESUMO

Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.


Assuntos
Algoritmos , Caenorhabditis elegans/fisiologia , Animais , Conectoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA