Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(5): 1036-1045.e9, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32416070

RESUMO

Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Vírus de RNA/imunologia , Animais , COVID-19 , Células Cultivadas , Quimiocinas/genética , Quimiocinas/imunologia , Infecções por Coronavirus/genética , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Inflamação/virologia , Interferons/genética , Interferons/imunologia , Pandemias , Pneumonia Viral/genética , Vírus de RNA/classificação , SARS-CoV-2 , Transcrição Gênica
2.
Immunity ; 54(3): 557-570.e5, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33577760

RESUMO

The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global morbidity, mortality, and societal disruption. A better understanding of virus-host interactions may potentiate therapeutic insights toward limiting this infection. Here we investigated the dynamics of the systemic response to SARS-CoV-2 in hamsters by histological analysis and transcriptional profiling. Infection resulted in consistently high levels of virus in the upper and lower respiratory tracts and sporadic occurrence in other distal tissues. A longitudinal cohort revealed a wave of inflammation, including a type I interferon (IFN-I) response, that was evident in all tissues regardless of viral presence but was insufficient to prevent disease progression. Bolstering the antiviral response with intranasal administration of recombinant IFN-I reduced viral disease, prevented transmission, and lowered inflammation in vivo. This study defines the systemic host response to SARS-CoV-2 infection and supports use of intranasal IFN-I as an effective means of early treatment.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , SARS-CoV-2/fisiologia , Animais , Biópsia , COVID-19/genética , COVID-19/imunologia , Cricetinae , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Especificidade de Órgãos/imunologia , Virulência , Replicação Viral/imunologia
3.
Proc Natl Acad Sci U S A ; 115(5): 1069-1074, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339472

RESUMO

Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.


Assuntos
Citomegalovirus/genética , Proteínas Imediatamente Precoces/metabolismo , MicroRNAs/metabolismo , Transativadores/metabolismo , Biologia Computacional , Fibroblastos/metabolismo , Regulação Viral da Expressão Gênica , Inativação Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Mutação , Células Mieloides/metabolismo , Ativação Transcricional , Transcriptoma , Proteínas do Envelope Viral/genética , Replicação Viral
4.
Artigo em Inglês | MEDLINE | ID: mdl-37028298

RESUMO

A direct comparison of performance and acoustic properties of high-intensity focused ultrasonic transducers utilizing lead-free (sodium bismuth titanate-NBT) and lead-based (lead zirconate titanate-PZT) piezoceramics is discussed. All transducers operate at 12 MHz at third harmonic frequency, having an outer diameter of 20 mm, a central hole of 5 mm in diameter, and a radius of curvature of 15 mm. The electroacoustic efficiency determined by a radiation force balance is evaluated in a range of input power levels up to 15 W. Schlieren tomography as well as hydrophone measurements are used for evaluation of the acoustic field distribution. It is found that the average electroacoustic efficiency of NBT-based transducers is approximately 40%, while it is around 80% in the PZT-based devices. NBT devices show significantly higher inhomogeneity of the acoustic field under schlieren tomography compared to PZT devices. From pressure measurements in the prefocal plane, it was found that the inhomogeneity could be attributed to depoling of significant areas of the NBT piezo-component during the fabrication process. In conclusion, PZT-based devices performed significantly better than those using lead-free material. However, the NBT devices show promise for this application and their electroacoustic efficiency as well as the uniformity of the acoustic field could be improved by employing a low-temperature fabrication process or repoling after processing.

5.
STAR Protoc ; 3(2): 101383, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35664254

RESUMO

Here, we describe a series of protocols detailing the steps for evaluating SARS-CoV-2 infection in models of the human eye. Included are protocols for whole eye organoid differentiation, SARS-CoV-2 infection, and processing organoids for single-cell RNA sequencing. Additional protocols describe how to dissect and culture adult human ocular cells from cadaver donor eyes and how to compare infection of SARS-CoV-2 and the presence of SARS-CoV-2 entry factors using qPCR, immunofluorescence, and plaque assays. For complete details on the use and execution of this protocol, please refer to Eriksen et al. (2021).


Assuntos
COVID-19 , Adulto , Olho , Humanos , Organoides , SARS-CoV-2
6.
Sci Transl Med ; 14(664): eabq3059, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35857629

RESUMO

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster after either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely affected the olfactory bulb (OB) and olfactory epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month after viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.


Assuntos
COVID-19 , Animais , COVID-19/complicações , Cricetinae , Humanos , Interferons , Mesocricetus , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
7.
Sci Immunol ; 6(66): eabm3131, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34699266

RESUMO

SARS-CoV-2 has caused morbidity and mortality across the globe. As the virus spreads, new variants are arising that show enhanced capacity to bypass preexisting immunity. To understand the memory response to SARS-CoV-2, here, we monitored SARS-CoV-2­specific T and B cells in a longitudinal study of infected and recovered golden hamsters (Mesocricetus auratus). We demonstrated that engagement of the innate immune system after SARS-CoV-2 infection was delayed but was followed by a pronounced adaptive response. Moreover, T cell adoptive transfer conferred a reduction in virus levels and rapid induction of SARS-CoV-2­specific B cells, demonstrating that both lymphocyte populations contributed to the overall response. Reinfection of recovered animals with a SARS-CoV-2 variant of concern showed that SARS-CoV-2­specific T and B cells could effectively control the infection that associated with the rapid induction of neutralizing antibodies but failed to block transmission to both naïve and seroconverted animals. These data suggest that the adaptive immune response to SARS-CoV-2 is sufficient to provide protection to the host, independent of the emergence of variants.


Assuntos
COVID-19/imunologia , Modelos Animais de Doenças , Memória Imunológica/imunologia , SARS-CoV-2/imunologia , Replicação Viral/imunologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , COVID-19/virologia , Cricetinae , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Replicação Viral/genética
8.
Cell Stem Cell ; 28(7): 1205-1220.e7, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022129

RESUMO

The SARS-CoV-2 pandemic has caused unparalleled disruption of global behavior and significant loss of life. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible routes of entry is essential. While aerosol transmission is thought to be the primary route of spread, viral particles have been detected in ocular fluid, suggesting that the eye may be a vulnerable point of viral entry. To this end, we confirmed SARS-CoV-2 entry factor and antigen expression in post-mortem COVID-19 patient ocular surface tissue and observed productive viral replication in cadaver samples and eye organoid cultures, most notably in limbal regions. Transcriptional analysis of ex vivo infected ocular surface cells and hESC-derived eye cultures revealed robust induction of NF-κB in infected cells as well as diminished type I/III interferon signaling. Together these data suggest that the eye can be directly infected by SARS-CoV-2 and implicate limbus as a portal for viral entry.


Assuntos
COVID-19 , Células-Tronco Embrionárias Humanas , Adulto , Epitélio , Humanos , Pandemias , SARS-CoV-2
9.
Stem Cell Reports ; 16(9): 2274-2288, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34403650

RESUMO

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. Here, using an established in vivo hamster model, we demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals. Furthermore, we found damaged cardiomyocytes in hamsters and COVID-19 autopsy samples. To explore the mechanism, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be productively infected by SARS-CoV-2, leading to secretion of the monocyte chemoattractant cytokine CCL2 and subsequent monocyte recruitment. Increased CCL2 expression and monocyte infiltration was also observed in the hearts of infected hamsters. Although infected CMs suffer damage, we find that the presence of macrophages significantly reduces SARS-CoV-2-infected CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and suggests a mechanism of immune cell infiltration and histopathology in heart tissues of COVID-19 patients.


Assuntos
COVID-19/patologia , Quimiocina CCL2/metabolismo , Traumatismos Cardíacos/virologia , Monócitos/imunologia , Miócitos Cardíacos/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Humanos , Macrófagos/imunologia , Masculino , Miócitos Cardíacos/virologia , Células-Tronco Pluripotentes/citologia , Células Vero
10.
Stem Cell Reports ; 16(3): 505-518, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33636110

RESUMO

The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant interindividual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly afflict healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants influence vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single-nucleotide polymorphism (rs4702), common in the population and located in the 3' UTR of the protease FURIN, influences alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can have an impact on viral infection and thus contribute to clinical heterogeneity in COVID-19. Ongoing genetic studies will help to identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs.


Assuntos
COVID-19/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões 3' não Traduzidas/genética , Adolescente , Adulto , Animais , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Furina/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Masculino , Neurônios/virologia , Peptídeo Hidrolases/genética , SARS-CoV-2/patogenicidade , Células Vero
11.
Nat Biomed Eng ; 5(8): 815-829, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33941899

RESUMO

The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Teste para COVID-19/métodos , Dispositivos Lab-On-A-Chip , Animais , COVID-19/diagnóstico , COVID-19/virologia , Linhagem Celular , Cricetinae , Feminino , Proteínas de Fluorescência Verde , Humanos , Masculino , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
12.
SSRN ; : 3650574, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32742243

RESUMO

The outbreak of COVID-19 caused by the SARS-CoV-2 virus has created an unparalleled disruption of global behavior and a significant loss of human lives. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible viral entry routes is essential. As aerosol transmission is thought to be the primary route of spread, we sought to investigate whether the eyes are potential entry portals for SARS-CoV-2. While virus has been detected in the eye, in order for this mucosal membrane to be a bone fide entry source SARS-CoV-2 would need the capacity to productively infect ocular surface cells.  As such, we conducted RNA sequencing in ocular cells isolated from adult human cadaver donor eyes as well as from a pluripotent stem cell-derived whole eye organoid model to evaluate the expression of ACE2 and TMPRSS2, essential proteins that mediate SARS-CoV-2 viral entry. We also infected eye organoids and adult human ocular cells with SARS-CoV-2 and evaluated virus replication and the host response to infection. We found the limbus was most susceptible to infection, whereas the central cornea exhibited only low levels of replication. Transcriptional profiling of the limbus upon SARS-CoV-2 infection, found that while type I or III interferons were not detected in the lung epithelium, a significant inflammatory response was mounted. Together these data suggest that the human eye can be directly infected by SARS-CoV-2 and thus is a route warranting protection. Funding: The National Eye Institute (NEI), Bethesda, MD, USA, extramural grant 1R21EY030215-01 and the Icahn School of Medicine at Mount Sinai supported this study.

13.
Res Sq ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33236003

RESUMO

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. In order to study the cause of myocardial pathology in COVID-19 patients, we used a hamster model to determine whether following infection SARS-CoV-2, the causative agent of COVID-19, can be detected in heart tissues. Here, we clearly demonstrate that viral RNA and nucleocapsid protein is present in cardiomyocytes in the hearts of infected hamsters. Interestingly, functional cardiomyocyte associated gene expression was decreased in infected hamster hearts, corresponding to an increase in reactive oxygen species (ROS). This data using an animal model was further validated using autopsy heart samples of COVID-19 patients. Moreover, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be infected by SARS-CoV-2 and that CCL2 is secreted upon SARS-CoV-2 infection, leading to monocyte recruitment. Increased CCL2 expression and macrophage infiltration was also observed in the hearts of infected hamsters. Using single cell RNA-seq, we also show that macrophages are able to decrease SARS-CoV-2 infection of CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and proposes a mechanism of immune-cell infiltration and pathology in heart tissue of COVID-19 patients.

14.
ACS Omega ; 3(12): 17511-17519, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458355

RESUMO

Stainless steel (SS) surfaces were grafted with poly(glycidyl methacrylate) (PGMA) brushes that were post-modified using allylamine, diallylamine, and propylamine as reagents. Likewise, poly[2-(diethylamino)ethyl methacrylate] brushes were synthesized. All samples were compression molded with uncured ethylene-propylene-diene M-class rubber and dicumyl peroxide and vulcanized for 12 min at 170 °C. The efficiency of the novel bonding solution was evaluated through peel experiments. Two parameters, the fracture toughness () and the cohesive-to-adhesive fracture ratio (A r), were calculated to evaluate the strength and the performance of the coupling, respectively. For the nanometer-thin PGMA films modified with allylamine, in particular, full cohesive fracture was obtained. The obtained values of (15.4 ± 1.1 N mm-1) and A r (1.00 ± 0.01) matched those obtained for a micrometer-thick commercial bonding agent. Cross-linking of polymer brushes by intermolecular reactions by the primary amines proved to have a significant impact on the type of fracture (cohesive/adhesive) and the performance of the adhesives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA