Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Nature ; 617(7959): 111-117, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100901

RESUMO

Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.


Assuntos
Carbono , Florestas , Árvores , Clima Tropical , Biomassa , Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Xilema/metabolismo , Chuva , Mudança Climática , Sequestro de Carbono , Estresse Fisiológico , Desidratação
2.
Ecol Lett ; 27(2): e14365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362774

RESUMO

Plants harbour a great chemodiversity, that is diversity of specialised metabolites (SMs), at different scales. For instance, individuals can produce a large number of SMs, and populations can differ in their metabolite composition. Given the ecological and economic importance of plant chemodiversity, it is important to understand how it arises and is maintained over evolutionary time. For other dimensions of biodiversity, that is species diversity and genetic diversity, quantitative models play an important role in addressing such questions. Here, we provide a synthesis of existing hypotheses and quantitative models, that is mathematical models and computer simulations, for the evolution of plant chemodiversity. We describe each model's ingredients, that is the biological processes that shape chemodiversity, the scales it considers and whether it has been formalized as a quantitative model. Although we identify several quantitative models, not all are dynamic and many influential models have remained verbal. To fill these gaps, we outline our vision for the future of chemodiversity modelling. We identify quantitative models used for genetic variation that may be adapted for chemodiversity, and we present a flexible framework for the creation of individual-based models that address different scales of chemodiversity and combine different ingredients that bring this chemodiversity about.


Assuntos
Biodiversidade , Plantas , Humanos , Plantas/genética , Simulação por Computador
3.
Bioscience ; 74(3): 146-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38560618

RESUMO

What are social niches, and how do they arise and change? Our first goal in the present article is to clarify the concept of an individualized social niche and to distinguish it from related concepts, such as a social environment and a social role. We argue that focal individuals are integral parts of individualized social niches and that social interactions with conspecifics are further core elements of social niches. Our second goal in the present article is to characterize three types of processes-social niche construction, conformance, and choice (social NC3 processes)-that explain how individualized social niches originate and change. Our approach brings together studies of behavior, ecology, and evolution and integrates social niches into the broader concept of an individualized ecological niche. We show how clarifying the concept of a social niche and recognizing the differences between the three social NC3 processes enhance and stimulate empirical research.

4.
J Toxicol Environ Health A ; 87(8): 342-356, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38310537

RESUMO

The assessment of amphibian responses as bioindicators of exposure to chemical pollutants is an important tool for conservation of native species. This study aimed to investigate the effects of chronic aluminum (Al) and zinc (Zn) exposure on survival, body size, morphology (malformations), and immune system (leukocyte profile) in P. cuvieri tadpoles. Ecotoxicological analyses were performed utilizing chronic toxicity tests in which 210 tadpoles at the 25th Gosner developmental stage were exposed to Al and Zn. Individuals of P. cuvieri were maintained in glass containers containing various concentrations of aluminum sulfate (0.1, 0.2, or 0.3 mg/L) and zinc sulfate (0.18, 0.27 or 0.35 mg/L), and tests were performed in triplicate. After 14 days, amphibians were weighed, measured and survival rate, malformations in the oral and intestine apparatus, leukocyte profile, and ratio between neutrophils and lymphocytes determined. The differing concentrations of Al and Zn did not produce lethality in P. cuvieri where 95% of the animals survived 326 hr following metal exposure. Individuals exposed to Zn achieved greater body growth and weight gain compared to controls. Aluminum increased weight gain compared controls. These metals also produced malformations of the oral and intestine apparatus and enhanced occurrence of hemorrhages, especially at the highest doses. Lymphocytes were the predominant cells among leukocytes, with lymphopenia and neutrophilia observed following Al and Zn treatment, as evidenced by elevated neutrophil/lymphocyte ratio, an important indicator of stress in animals. Data suggest that further studies need to be carried out, even with metal concentrations higher than those prescribed by CONAMA, to ensure the conservation of this species.


Assuntos
Poluentes Químicos da Água , Zinco , Humanos , Animais , Zinco/farmacologia , Zinco/toxicidade , Alumínio/farmacologia , Larva , Anuros/fisiologia , Metais , Sistema Imunitário/química , Tamanho Corporal , Aumento de Peso , Poluentes Químicos da Água/toxicidade
5.
Ecotoxicol Environ Saf ; 272: 116086, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354433

RESUMO

Anthropogenic influences such as plastic pollution are causing serious environmental problems. While effects of microplastics on marine organisms are well studied, less is known about effects of plastic particles on terrestrial organisms such as plants. We investigated the effects of microplastic particles on different growth and metabolic traits of savoy cabbage (Brassica oleracea var. sabauda). Sections of seedlings exposed to polystyrene particles were analysed by coherent Raman scattering microscopy. These analyses revealed an uptake of particles in a size range of 0.5 µm to 2.0 µm into cells of the hypocotyl. Furthermore, plants were grown in substrate amended with polyethylene and polystyrene particles of different sizes (s1: 200-500 µm; s2: 100-200 µm; s3: 20-100 µm; s4: < 100 µm, with most particles < 20 µm; s5: < 20 µm) and in different concentrations (c1 = 0.1%, c2 = 0.01%, c3 = 0.001%). After several weeks, shoot and root biomass were harvested. Leaves were analysed for their carbon to nitrogen ratio, while amino acid and glucosinolate composition were measured using high performance liquid chromatography. Plastic type, particle size and concentration showed distinct effects on certain plant traits. Shoot biomass was interactively influenced by size and concentration of polyethylene, while root biomass was not modified by any of the plastic exposure treatments. Likewise, the composition and total concentrations of leaf amino acids were not affected, but the leucine concentration was significantly increased in several of the plastic-exposed plants. Glucosinolates were also slightly altered, depending on the particle size. Some of the observed effects may be independent of plastic uptake, as larger particles were not taken up but still could affect plant traits. For example, in the rhizosphere plastic particles may increase the water holding capacity of the soil, impacting some of the plant traits. In summary, this study shows how important the plastic type, particle size and concentration are for the uptake of microplastics and their effects on plant traits, which may have important implications for crops, but also for ecosystems.


Assuntos
Brassica , Microplásticos , Microplásticos/toxicidade , Plásticos/análise , Ecossistema , Poliestirenos/análise , Brassica/metabolismo , Plantas/metabolismo , Polietileno/toxicidade , Polietileno/análise
6.
Environ Microbiol ; 25(9): 1624-1643, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37011905

RESUMO

Microbes associated with flowers and leaves affect plant health and fitness and modify the chemical phenotypes of plants with consequences for interactions of plants with their environment. However, the drivers of bacterial communities colonizing above-ground parts of grassland plants in the field remain largely unknown. We therefore examined the relationships between phytochemistry and the epiphytic bacterial community composition of flowers and leaves of Ranunculus acris and Trifolium pratense. On 252 plant individuals, we characterized primary and specialized metabolites, that is, surface sugars, volatile organic compounds (VOCs), and metabolic fingerprints, as well as epiphytic flower and leaf bacterial communities. The genomic potential of bacterial colonizers concerning metabolic capacities was assessed using bacterial reference genomes. Phytochemical composition displayed pronounced variation within and between plant species and organs, which explained part of the variation in bacterial community composition. Correlation network analysis suggests strain-specific correlations with metabolites. Analysis of bacterial reference genomes revealed taxon-specific metabolic capabilities that corresponded with genes involved in glycolysis and adaptation to osmotic stress. Our results show relationships between phytochemistry and the flower and leaf bacterial microbiomes suggesting that plants provide chemical niches for distinct bacterial communities. In turn, bacteria may induce alterations in the plants' chemical phenotype. Thus, our study may stimulate further research on the mechanisms of trait-based community assembly in epiphytic bacteria.


Assuntos
Flores , Microbiota , Flores/microbiologia , Folhas de Planta/microbiologia , Bactérias/genética , Microbiota/genética , Plantas
7.
New Phytol ; 239(5): 1545-1555, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37309036

RESUMO

Some plant species tolerate and accumulate high levels of metals or metalloids in their tissues. The elemental defence hypothesis posits that metal(loid) hyperaccumulation by these plants can serve as protection against antagonists. Numerous studies support this hypothesis. In addition, as other plant species, hyperaccumulators synthesise specialised metabolites that can act as organic defences. In principle, the composition and concentration of plant-specialised metabolites vary pronouncedly not only among species, but also within species and within individuals. This variation is called chemodiversity. Surprisingly, the role of chemodiversity has received little attention in elemental defence. Thus, we advocate that the concept of the elemental defence hypothesis should be extended and linked to the multifunctionality of plant chemodiversity to better understand the eco-evolutionary dynamics and maintenance of metal(loid) hyperaccumulation. Comprehensive literature studies revealed that both metal(loid)s and specialised metabolites acting as defences are highly diverse in some hyperaccumulators and the biosynthetic pathways of these two types of defences are partly intertwined. Several edaphic-, population-, temporal- and spatial-related factors were found to influence metal(loid) diversity, which should be considered in the elemental defence hypothesis. We thus present a novel synthesis and outlook to extend the elemental defence hypothesis in the light of chemodiversity.


Assuntos
Metais , Plantas , Plantas/metabolismo , Metais/metabolismo , Evolução Biológica
8.
Metabolomics ; 19(7): 62, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351733

RESUMO

INTRODUCTION: Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES: In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS: Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS: Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION: Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Reprodutibilidade dos Testes , Metabolômica , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plantas
9.
Ann Bot ; 132(1): 1-14, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37220889

RESUMO

BACKGROUND: Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE: We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS: According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS: Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.


Assuntos
Polinização , Compostos Orgânicos Voláteis , Animais , Polinização/fisiologia , Flores/fisiologia , Néctar de Plantas/análise , Insetos , Pólen/fisiologia , Compostos Orgânicos Voláteis/metabolismo
10.
Physiol Plant ; 175(2): e13874, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36775898

RESUMO

With climate change, longer periods without precipitation but also heavy rains will become more frequent. Thus, understanding and predicting the implications of drought-waterlogging-redrying cycles for plants is essential. We examined the effects of such events on wheat (Triticum aestivum). We measured the impacts of subsequent water treatments (drought-waterlogging-redrying) on plant shoot and root biomass, photosynthesis and transpiration, as well as on primary metabolites and transcripts of leaves. Drought and drought followed by waterlogging severely reduced shoot and root biomass. Chlorophyll fluorescence parameters and the CO2 assimilation rate per unit leaf area were not affected by the treatments but, after the redrying phase, plants grown under the stress treatments showed a higher transpiration rate per unit leaf area and a lower instantaneous water use efficiency. Many organic acids of the citrate cycle were less concentrated in leaves of stressed plants, while most amino acids were more concentrated. Transcript analysis of genes involved in signalling and metabolism revealed different expression patterns. While some genes responded only to drought or drought followed by waterlogging, several genes were induced upon both treatments and some were still upregulated at the end of the redrying phase. We provide insights into how wheat responds to changes in water regimes, with some of the changes probably allowing the plants to cope with these stressors, at least to a certain degree.


Assuntos
Secas , Triticum , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Brotos de Planta , Triticum/fisiologia
11.
Biometals ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874491

RESUMO

Soil pollution by metals and metalloids as a consequence of anthropogenic industrialisation exerts a seriously damaging impact on ecosystems. However, certain plant species, termed hyperaccumulators, are able to accumulate extraordinarily high concentrations of these metal(loid)s in their aboveground tissues. Such hyperaccumulation of metal(loid)s is known to act as a defence against various antagonists, such as herbivores and pathogens. We investigated the influences of metal(loid)s on potential defence traits, such as foliar elemental, organic and mechanical defences, in the hyperaccumulator plant species Arabidopsis halleri (Brassicaceae) by artificially amending the soil with common metallic pollutants, namely cadmium (Cd) and zinc (Zn). Additionally, unamended and metal-amended soils were supplemented with the metalloid silicon (Si) to study whether Si could alleviate metal excess. Individuals originating from one non-/low- and two moderately to highly metal-contaminated sites with different metal concentrations (hereafter called accessions) were grown for eight weeks in a full-factorial design under standardised conditions. There were significant interactive effects of metal amendment and Si supplementation on foliar concentrations of certain elements (Zn, Si, aluminium (Al), iron (Fe), potassium (K) and sulfur (S), but these were accession-specific. Profiles of glucosinolates, characteristic organic defences of Brassicaceae, were distinct among accessions, and the composition was affected by soil metal amendment. Moreover, plants grown on metal-amended soil contained lower concentrations of total glucosinolates in one of the accessions, which suggests a potential trade-off between inorganic defence acquisition and biosynthesis of organic defence. The density of foliar trichomes, as a proxy for the first layer of mechanical defence, was also influenced by metal amendment and/or Si supplementation in an accession-dependent manner. Our study highlights the importance of examining the effects of co-occurring metal(loid)s in soil on various foliar defence traits in different accessions of a hyperaccumulating species.

12.
J Chem Ecol ; 49(1-2): 46-58, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36539674

RESUMO

Group-living individuals experience immense risk of disease transmission and parasite infection. In social and in some non-social insects, disease control with immunomodulation arises not only via individual immune defenses, but also via infochemicals such as contact cues and (defensive) volatiles to mount a group-level immunity. However, little is known about whether activation of the immune system elicits changes in chemical phenotypes, which may mediate these responses. We here asked whether individual immune experience resulting from wounding or injection of heat-killed Bacillus thuringiensis (priming) leads to changes in the chemical profiles of female and male adult red flour beetles, Tribolium castaneum, which are non-social but gregarious. We analyzed insect extracts using GC-FID to study the chemical composition of (1) cuticular hydrocarbons (CHCs) as candidates for the transfer of immunity-related information between individuals via contact, and (2) stink gland secretions, with analysis of benzoquinones as main active compounds regulating 'external immunity'. Despite a pronounced sexual dimorphism in CHC profiles, wounding stimulation led to similar profile changes in males and females with increases in the proportion of methyl-branched alkanes compared to naïve beetles. While changes in the overall secretion profiles were less pronounced, absolute amounts of benzoquinones were transiently elevated in wounded compared to naïve females. Responses to priming were insignificant in CHCs and secretions. We suggest that changes in different infochemicals after wounding may mediate immune status signaling in the context of both internal and external immune responses in groups of this non-social insect, thus showing parallels to social immunity.


Assuntos
Besouros , Tribolium , Animais , Feminino , Masculino , Tribolium/fisiologia , Besouros/fisiologia , Hidrocarbonetos , Alcanos , Benzoquinonas
13.
Bioprocess Biosyst Eng ; 46(8): 1133-1145, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36422699

RESUMO

The recently discovered wild yeast Wickerhamomyces sp. UFFS-CE-3.1.2 was analyzed through a high-throughput experimental design to improve ethanol yields in synthetic media with glucose, xylose, and cellobiose as carbon sources and acetic acid, furfural, formic acid, and NaCl as fermentation inhibitors. After Plackett-Burman (PB) and central composite design (CCD), the optimized condition was used in a fermentation kinetic analysis to compare this yeast's performance with an industrial Saccharomyces cerevisiae strain (JDY-01) genetically engineered to achieve a higher xylose fermentation capacity and fermentation inhibitors tolerance by overexpressing the genes XYL1, XYL2, XKS1, and TAL1. Our results show that furfural and NaCl had no significant effect on sugar consumption by UFFS-CE-3.1.2. Surprisingly, acetic acid negatively affected glucose but not xylose and cellobiose consumption. In contrast, the pH positively affected all the analyzed responses, indicating a cell's preference for alkaline environments. In the CCD, sugar concentration negatively affected the yields of ethanol, xylitol, and cellular biomass. Therefore, fermentation kinetics were carried out with the average concentrations of sugars and fermentation inhibitors and the highest tested pH value (8.0). Although UFFS-CE-3.1.2 fermented glucose efficiently, xylose and cellobiose were mainly used for cellular growth. Interestingly, the genetically engineered strain JDY-01 consumed ~ 30% more xylose and produced ~ 20% more ethanol. Also, while UFFS-CE-3.1.2 only consumed 32% of the acetic acid of the medium, JDY-01 consumed > 60% of it, reducing its toxic effects. Thus, the overexpressed genes played an essential role in the inhibitors' tolerance, and the applied engineering strategy may help improve 2G ethanol production.


Assuntos
Celobiose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Etanol , Projetos de Pesquisa , Furaldeído , Cinética , Cloreto de Sódio , Fermentação , Xilose , Glucose
14.
Am Nat ; 199(6): E229-E243, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35580226

RESUMO

AbstractIntergenerational effects, also known as parental effects in which the offspring phenotype is influenced by the parental phenotype, can occur in response to factors that occur not only in early but also in late parental life. However, little is known about how these parental life stage-specific environments interact with each other and with the offspring environment to influence offspring phenotypes, particularly in organisms that realize distinct niches across ontogeny. We examined the effects of parental larval starvation and adult reproductive environment on offspring traits under matching or mismatching offspring larval starvation conditions using the holometabolous, haplodiploid insect Athalia rosae (turnip sawfly). We show that parental larval starvation had trait-dependent intergenerational effects on both life history and consumption traits of offspring larvae, partly in interaction with offspring conditions, while there was no significant effect of parental adult reproductive environment. In addition, while offspring larval starvation led to numerous gene- and pathway-level expression differences, parental larval starvation impacted far fewer genes and only the ribosomal pathway. Our findings reveal that parental starvation evokes complex intergenerational effects on offspring life history traits, consumption patterns, and gene expression, although the effects are less pronounced than those of offspring starvation.


Assuntos
Características de História de Vida , Transcriptoma , Animais , Insetos/genética , Larva/genética , Reprodução
15.
Proc Biol Sci ; 289(1978): 20220176, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35858054

RESUMO

Chemical defense is a widespread anti-predator strategy exhibited by organisms, with individuals either synthesizing or extrinsically acquiring defensive chemicals. In some species, such defences can also be transferred among conspecifics. Here, we tested the effects of pharmacophagy on the defense capability of the turnip sawfly, Athalia rosae, which can acquire neo-clerodane diterpenoids (clerodanoids) via pharmacophagy when having access to the plant Ajuga reptans. We show that clerodanoid access mediates protection against predation by mantids for the sawflies, both in a no-choice feeding assay and a microcosm setup. Even indirect access to clerodanoids, via nibbling on conspecifics that had access to the plant, resulted in protection against predation albeit to a lower degree than direct access. Furthermore, sawflies that had no direct access to clerodanoids were consumed less frequently by mantids when they were grouped with conspecifics that had direct access. Most, but not all, of such initially undefended sawflies could acquire clerodanoids from conspecifics that had direct access to the plant, although in low quantities. Together our results demonstrate that clerodanoids serve as a chemical defense that can also be transferred by interactions among conspecifics. Moreover, the presence of chemically defended individuals in a group can confer protection onto conspecifics that had no direct access to clerodanoids.


Assuntos
Brassicaceae , Himenópteros , Animais , Humanos , Larva , Plantas , Comportamento Predatório
16.
New Phytol ; 234(4): 1168-1174, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297052

RESUMO

Niche theory considering the traits of species and individuals provides a powerful tool to integrate ecology and evolution of species. In plant ecology, morphological and physiological traits are commonly considered as niche dimensions, whereas phytochemical traits are mostly neglected in this context despite their pivotal functions in plant responses to their environment and in mediating interactions. The diversity of plant phytochemicals can thus mediate three key processes: niche choice, conformance and construction. Here, we integrate frameworks from niche theory with chemical ecology and argue that plants use their individual-specific diversity in phytochemicals (chemodiversity) for different niche realization processes. Our concept has important implications for ecosystem processes and stability and increases the predictive ability of chemical ecology.


Assuntos
Evolução Biológica , Ecossistema , Ecologia , Fenótipo , Compostos Fitoquímicos , Plantas
17.
Geophys Res Lett ; 49(1): e2021GL095184, 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35865077

RESUMO

Squall lines are known to be the consequence of the interaction of low-level shear with cold pools associated with convective downdrafts. Also, as the magnitude of the shear increases beyond a critical shear, squall lines tend to orient themselves. The existing literature suggests that this orientation reduces incoming wind shear to the squall line, and maintains equilibrium between wind shear and cold pool spreading. Although this theory is widely accepted, very few quantitative studies have been conducted on supercritical regime especially. Here, we test this hypothesis with tropical squall lines obtained by imposing a vertical wind shear in cloud resolving simulations in radiative convective equilibrium. In the sub-critical regime, squall lines are perpendicular to the shear. In the super-critical regime, their orientation maintain the equilibrium, supporting existing theories. We also find that as shear increases, cold pools become more intense. However, this intensification has little impact on squall line orientation.

18.
Oecologia ; 198(1): 255-265, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34851452

RESUMO

Throughout their lifetime, insects face multiple environmental challenges that influence their performance. Gregarines are prevalent endoparasites in most invertebrates that affect the fitness of their hosts, but are often overlooked in ecological studies. Next to such biotic factors, a current common challenge is anthropogenic pollution with pesticides, which causes a major threat to non-target organisms that are readily exposed to lethal or sublethal concentrations. In a laboratory study, we investigated whether the presence of gregarines modulates the food consumption and life history traits of a (non-target) leaf beetle species, Phaedon cochleariae, in response to sublethal insecticide exposure. We show that the larval food consumption of the herbivore was neither affected by gregarine infection nor sublethal insecticide exposure. Nevertheless, infection with gregarines led to a delayed development, while insecticide exposure resulted in a lower body mass of adult males and a reduced reproduction of females. Individuals exposed to both challenges suffered most, as they had the lowest survival probability. This indicates detrimental effects on the population dynamics of non-target insects infected with naturally occurring gregarines that face additional stress from agrochemical pollution. Moreover, we found that the infection load with gregarines was higher in individuals exposed to sublethal insecticide concentrations compared to unexposed individuals. To counteract the global decline of insects, the potential of natural parasite infections in modulating insect responses to anthropogenic and non-anthropogenic environmental factors should be considered in ecological risk assessment.


Assuntos
Besouros , Inseticidas , Animais , Feminino , Herbivoria , Humanos , Larva , Masculino , Reprodução
19.
J Chem Ecol ; 48(11-12): 827-840, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36401688

RESUMO

Plants have to allocate their resources in both growth and defense under different environmental challenges. Several plant species have become invasive particularly in disturbed fertile habitats, which may influence their resource allocation. We studied the effects of nitrate fertilization (low versus high) on various plant responses towards a pathogenic fungus, Alternaria brassicae, and a herbivorous insect species, Mamestra brassicae, in a population of Bunias orientalis, which is invasive in parts of central Europe. Aboveground biomass and leaf trichome density were enhanced in plants under high fertilization. In contrast, the short-term fungal infection and herbivory had no effect on aboveground biomass. Leaf water, nitrogen content and glucosinolate concentrations were neither affected by fertilization nor in response to antagonist attack. The total soluble sugar content, especially fructose, as well as leaf peroxidase activity increased significantly in leaves upon fungal infection, but independent of fertilization. Larval biomass gain and herbivore survival were likewise unaffected by fertilization. Our findings highlight that under conditions of high fertilization, B. orientalis plants allocate more resources into growth and morphological defenses than chemical defenses. In contrast, induced responses to short-term antagonist attack seem independent of nitrate availability in this population.


Assuntos
Brassicaceae , Micoses , Animais , Herbivoria/fisiologia , Nitratos/análise , Insetos , Plantas , Nutrientes , Folhas de Planta/química
20.
J Environ Sci Health B ; 57(9): 729-738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915872

RESUMO

Lolium multiflorum Lam. is a winter weed of difficult control found as diploid (2n) and tetraploid plants (4n). Our study aimed to evaluate the responses of antioxidant enzymes and lipid peroxidation, in both diploid and tetraploid ryegrass varieties. Treatments consisted of control plants (without any herbicide application), and four herbicides with different mechanisms of action. Leaf material was collected 36 h after treatment imposition to determine the lipid peroxidation by ferrous oxidation-xylenol (FOX) content, and the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione-S-transferase (GST), and δ-aminolevulinic acid dehydratase (ALAD). Both ryegrass varieties showed oxidative stress mainly due to a downregulated decreased (>31%) in SOD activity and an increase (>32%) in lipid peroxidation (FOX), mainly in ryegrass genotypes exposed to haloxyfop, glyphosate, and iodosulfuron. On the other hand, clethodim-treated plants had an increase in SOD and APX activities, associated with a reduced ALAD activity in both 2n (32%) and 4n (11%) genotypes. In general, the 2n genotype was more affected than the 4n genotype.


Assuntos
Herbicidas , Lolium , Antioxidantes/metabolismo , Ascorbato Peroxidases/genética , Catalase/genética , Catalase/metabolismo , Glutationa , Glutationa Transferase/metabolismo , Herbicidas/farmacologia , Peroxidação de Lipídeos , Lolium/genética , Lolium/metabolismo , Estresse Oxidativo , Sintase do Porfobilinogênio , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA