Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Nucleic Acids Res ; 51(4): e20, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629274

RESUMO

The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.


Assuntos
Aprendizado Profundo , Redes Reguladoras de Genes , Neoplasias , Análise da Expressão Gênica de Célula Única , Humanos , Regulação da Expressão Gênica , Neoplasias/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
2.
PLoS Comput Biol ; 19(5): e1011105, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37228169

RESUMO

Single-pulse electrical stimulation in the nervous system, often called cortico-cortical evoked potential (CCEP) measurement, is an important technique to understand how brain regions interact with one another. Voltages are measured from implanted electrodes in one brain area while stimulating another with brief current impulses separated by several seconds. Historically, researchers have tried to understand the significance of evoked voltage polyphasic deflections by visual inspection, but no general-purpose tool has emerged to understand their shapes or describe them mathematically. We describe and illustrate a new technique to parameterize brain stimulation data, where voltage response traces are projected into one another using a semi-normalized dot product. The length of timepoints from stimulation included in the dot product is varied to obtain a temporal profile of structural significance, and the peak of the profile uniquely identifies the duration of the response. Using linear kernel PCA, a canonical response shape is obtained over this duration, and then single-trial traces are parameterized as a projection of this canonical shape with a residual term. Such parameterization allows for dissimilar trace shapes from different brain areas to be directly compared by quantifying cross-projection magnitudes, response duration, canonical shape projection amplitudes, signal-to-noise ratios, explained variance, and statistical significance. Artifactual trials are automatically identified by outliers in sub-distributions of cross-projection magnitude, and rejected. This technique, which we call "Canonical Response Parameterization" (CRP) dramatically simplifies the study of CCEP shapes, and may also be applied in a wide range of other settings involving event-triggered data.


Assuntos
Encéfalo , Potenciais Evocados , Potenciais Evocados/fisiologia , Mapeamento Encefálico/métodos , Eletrodos Implantados , Estimulação Elétrica/métodos
3.
Semin Cancer Biol ; 84: 129-143, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631297

RESUMO

The complexity of diagnostic (surgical) pathology has increased substantially over the last decades with respect to histomorphological and molecular profiling. Pathology has steadily expanded its role in tumor diagnostics and beyond from disease entity identification via prognosis estimation to precision therapy prediction. It is therefore not surprising that pathology is among the disciplines in medicine with high expectations in the application of artificial intelligence (AI) or machine learning approaches given their capabilities to analyze complex data in a quantitative and standardized manner to further enhance scope and precision of diagnostics. While an obvious application is the analysis of histological images, recent applications for the analysis of molecular profiling data from different sources and clinical data support the notion that AI will enhance both histopathology and molecular pathology in the future. At the same time, current literature should not be misunderstood in a way that pathologists will likely be replaced by AI applications in the foreseeable future. Although AI will transform pathology in the coming years, recent studies reporting AI algorithms to diagnose cancer or predict certain molecular properties deal with relatively simple diagnostic problems that fall short of the diagnostic complexity pathologists face in clinical routine. Here, we review the pertinent literature of AI methods and their applications to pathology, and put the current achievements and what can be expected in the future in the context of the requirements for research and routine diagnostics.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Aprendizado de Máquina , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico
4.
Neuropathol Appl Neurobiol ; 49(1): e12866, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36519297

RESUMO

AIM: Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. METHODS: We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). RESULTS: The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. CONCLUSIONS: Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.


Assuntos
Aprendizado Profundo , Humanos , Inteligência Artificial , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
5.
Chem Rev ; 121(16): 9816-9872, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232033

RESUMO

Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.

6.
Chem Rev ; 121(16): 10142-10186, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33705118

RESUMO

In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.

7.
J Pathol ; 256(4): 378-387, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34878655

RESUMO

In head and neck squamous cell cancers (HNSCs) that present as metastases with an unknown primary (HNSC-CUPs), the identification of a primary tumor improves therapy options and increases patient survival. However, the currently available diagnostic methods are laborious and do not offer a sufficient detection rate. Predictive machine learning models based on DNA methylation profiles have recently emerged as a promising technique for tumor classification. We applied this technique to HNSC to develop a tool that can improve the diagnostic work-up for HNSC-CUPs. On a reference cohort of 405 primary HNSC samples, we developed four classifiers based on different machine learning models [random forest (RF), neural network (NN), elastic net penalized logistic regression (LOGREG), and support vector machine (SVM)] that predict the primary site of HNSC tumors from their DNA methylation profile. The classifiers achieved high classification accuracies (RF = 83%, NN = 88%, LOGREG = SVM = 89%) on an independent cohort of 64 HNSC metastases. Further, the NN, LOGREG, and SVM models significantly outperformed p16 status as a marker for an origin in the oropharynx. In conclusion, the DNA methylation profiles of HNSC metastases are characteristic for their primary sites, and the classifiers developed in this study, which are made available to the scientific community, can provide valuable information to guide the diagnostic work-up of HNSC-CUP. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Metilação de DNA , Neoplasias de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/genética , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
8.
Phys Chem Chem Phys ; 25(38): 26370-26379, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37750554

RESUMO

In recent years, the prediction of quantum mechanical observables with machine learning methods has become increasingly popular. Message-passing neural networks (MPNNs) solve this task by constructing atomic representations, from which the properties of interest are predicted. Here, we introduce a method to automatically identify chemical moieties (molecular building blocks) from such representations, enabling a variety of applications beyond property prediction, which otherwise rely on expert knowledge. The required representation can either be provided by a pretrained MPNN, or be learned from scratch using only structural information. Beyond the data-driven design of molecular fingerprints, the versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases, the automatic construction of coarse-grained force fields, as well as the identification of reaction coordinates.

9.
Neuroimage ; 252: 119053, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247548

RESUMO

Cross-frequency synchronization (CFS) has been proposed as a mechanism for integrating spatially and spectrally distributed information in the brain. However, investigating CFS in Magneto- and Electroencephalography (MEG/EEG) is hampered by the presence of spurious neuronal interactions due to the non-sinusoidal waveshape of brain oscillations. Such waveshape gives rise to the presence of oscillatory harmonics mimicking genuine neuronal oscillations. Until recently, however, there has been no methodology for removing these harmonics from neuronal data. In order to address this long-standing challenge, we introduce a novel method (called HARMOnic miNImization - Harmoni) that removes the signal components which can be harmonics of a non-sinusoidal signal. Harmoni's working principle is based on the presence of CFS between harmonic components and the fundamental component of a non-sinusoidal signal. We extensively tested Harmoni in realistic EEG simulations. The simulated couplings between the source signals represented genuine and spurious CFS and within-frequency phase synchronization. Using diverse evaluation criteria, including ROC analyses, we showed that the within- and cross-frequency spurious interactions are suppressed significantly, while the genuine activities are not affected. Additionally, we applied Harmoni to real resting-state EEG data revealing intricate remote connectivity patterns which are usually masked by the spurious connections. Given the ubiquity of non-sinusoidal neuronal oscillations in electrophysiological recordings, Harmoni is expected to facilitate novel insights into genuine neuronal interactions in various research fields, and can also serve as a steppingstone towards the development of further signal processing methods aiming at refining within- and cross-frequency synchronization in electrophysiological recordings.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Humanos , Magnetoencefalografia/métodos , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador
10.
Neuroimage ; 261: 119504, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35882272

RESUMO

Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging biomarker for brain health; however, the underlying neural features have remained unclear. We combined ensembles of convolutional neural networks with Layer-wise Relevance Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic resonance imaging (MRI) data of a population-based study (n = 2637, 18-82 years), our models estimated age accurately based on single and multiple modalities, regionally restricted and whole-brain images (mean absolute errors 3.37-3.86 years). We find that BA estimates capture ageing at both small and large-scale changes, revealing gross enlargements of ventricles and subarachnoid spaces, as well as white matter lesions, and atrophies that appear throughout the brain. Divergence from expected ageing reflected cardiovascular risk factors and accelerated ageing was more pronounced in the frontal lobe. Applying LRP, our study demonstrates how superior deep learning models detect brain-ageing in healthy and at-risk individuals throughout adulthood.


Assuntos
Aprendizado Profundo , Adulto , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
11.
PLoS Comput Biol ; 17(9): e1008710, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473701

RESUMO

Brain networks can be explored by delivering brief pulses of electrical current in one area while measuring voltage responses in other areas. We propose a convergent paradigm to study brain dynamics, focusing on a single brain site to observe the average effect of stimulating each of many other brain sites. Viewed in this manner, visually-apparent motifs in the temporal response shape emerge from adjacent stimulation sites. This work constructs and illustrates a data-driven approach to determine characteristic spatiotemporal structure in these response shapes, summarized by a set of unique "basis profile curves" (BPCs). Each BPC may be mapped back to underlying anatomy in a natural way, quantifying projection strength from each stimulation site using simple metrics. Our technique is demonstrated for an array of implanted brain surface electrodes in a human patient. This framework enables straightforward interpretation of single-pulse brain stimulation data, and can be applied generically to explore the diverse milieu of interactions that comprise the connectome.


Assuntos
Encéfalo/fisiologia , Conectoma , Estimulação Elétrica/métodos , Eletrodos Implantados , Eletroencefalografia , Potenciais Evocados , Humanos , Magnetoencefalografia
12.
Pathologe ; 43(3): 218-221, 2022 May.
Artigo em Alemão | MEDLINE | ID: mdl-35403871

RESUMO

Given the rapid developments, there is no doubt that artificial intelligence (AI) will substantially impact pathological diagnostics. However, it remains an open question if AI will primarily be another diagnostic tool, such as immunohistochemistry, or if AI will also be able to replace human expertise. Most current studies on AI in histopathology deal with relatively simple diagnostic problems and are not yet capable of coping with the complexity of routine diagnostics. While some methods in molecular pathology would already be unthinkable without AI, it remains to be shown how AI will also be able to help with difficult histomorphological differential diagnoses in the future.


Assuntos
Inteligência Artificial , Patologistas , Previsões , Humanos , Imuno-Histoquímica , Patologia Molecular
13.
Neuroimage ; 239: 118309, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182100

RESUMO

Methods for electro- or magnetoencephalography (EEG/MEG) based brain source imaging (BSI) using sparse Bayesian learning (SBL) have been demonstrated to achieve excellent performance in situations with low numbers of distinct active sources, such as event-related designs. This paper extends the theory and practice of SBL in three important ways. First, we reformulate three existing SBL algorithms under the majorization-minimization (MM) framework. This unification perspective not only provides a useful theoretical framework for comparing different algorithms in terms of their convergence behavior, but also provides a principled recipe for constructing novel algorithms with specific properties by designing appropriate bounds of the Bayesian marginal likelihood function. Second, building on the MM principle, we propose a novel method called LowSNR-BSI that achieves favorable source reconstruction performance in low signal-to-noise-ratio (SNR) settings. Third, precise knowledge of the noise level is a crucial requirement for accurate source reconstruction. Here we present a novel principled technique to accurately learn the noise variance from the data either jointly within the source reconstruction procedure or using one of two proposed cross-validation strategies. Empirically, we could show that the monotonous convergence behavior predicted from MM theory is confirmed in numerical experiments. Using simulations, we further demonstrate the advantage of LowSNR-BSI over conventional SBL in low-SNR regimes, and the advantage of learned noise levels over estimates derived from baseline data. To demonstrate the usefulness of our novel approach, we show neurophysiologically plausible source reconstructions on averaged auditory evoked potential data.


Assuntos
Algoritmos , Teorema de Bayes , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Simulação por Computador , Potenciais Evocados Auditivos , Humanos , Funções Verossimilhança , Dinâmica não Linear , Razão Sinal-Ruído
14.
Annu Rev Phys Chem ; 71: 361-390, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32092281

RESUMO

Machine learning (ML) is transforming all areas of science. The complex and time-consuming calculations in molecular simulations are particularly suitable for an ML revolution and have already been profoundly affected by the application of existing ML methods. Here we review recent ML methods for molecular simulation, with particular focus on (deep) neural networks for the prediction of quantum-mechanical energies and forces, on coarse-grained molecular dynamics, on the extraction of free energy surfaces and kinetics, and on generative network approaches to sample molecular equilibrium structures and compute thermodynamics. To explain these methods and illustrate open methodological problems, we review some important principles of molecular physics and describe how they can be incorporated into ML structures. Finally, we identify and describe a list of open challenges for the interface between ML and molecular simulation.

15.
Neuroimage ; 211: 116599, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035185

RESUMO

Cross-frequency coupling (CFC) between neuronal oscillations reflects an integration of spatially and spectrally distributed information in the brain. Here, we propose a novel framework for detecting such interactions in Magneto- and Electroencephalography (MEG/EEG), which we refer to as Nonlinear Interaction Decomposition (NID). In contrast to all previous methods for separation of cross-frequency (CF) sources in the brain, we propose that the extraction of nonlinearly interacting oscillations can be based on the statistical properties of their linear mixtures. The main idea of NID is that nonlinearly coupled brain oscillations can be mixed in such a way that the resulting linear mixture has a non-Gaussian distribution. We evaluate this argument analytically for amplitude-modulated narrow-band oscillations which are either phase-phase or amplitude-amplitude CF coupled. We validated NID extensively with simulated EEG obtained with realistic head modelling. The method extracted nonlinearly interacting components reliably even at SNRs as small as -15 dB. Additionally, we applied NID to the resting-state EEG of 81 subjects to characterize CF phase-phase coupling between alpha and beta oscillations. The extracted sources were located in temporal, parietal and frontal areas, demonstrating the existence of diverse local and distant nonlinear interactions in resting-state EEG data. All codes are available publicly via GitHub.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Modelos Teóricos , Simulação por Computador , Conectoma/normas , Eletroencefalografia/normas , Humanos , Magnetoencefalografia/normas
16.
Neuroimage ; 208: 116472, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870944

RESUMO

For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Linear Model (GLM). However, several challenging signal characteristics such as non-instantaneous and non-constant coupling are not yet addressed by this approach and additional auxiliary signals are not optimally exploited. We have recently introduced a new methodological framework for the unsupervised multivariate analysis of fNIRS signals using Blind Source Separation (BSS) methods. Building onto the framework, in this manuscript we show how to incorporate the advantages of regularized temporally embedded Canonical Correlation Analysis (tCCA) into the supervised GLM. This approach allows flexible integration of any number of auxiliary modalities and signals. We provide guidance for the selection of optimal parameters and auxiliary signals for the proposed GLM extension. Its performance in the recovery of evoked HRFs is then evaluated using both simulated ground truth data and real experimental data and compared with the GLM with short-separation regression. Our results show that the GLM with tCCA significantly improves upon the current best practice, yielding significantly better results across all applied metrics: Correlation (HbO max. +45%), Root Mean Squared Error (HbO max. -55%), F-Score (HbO up to 3.25-fold) and p-value as well as power spectral density of the noise floor. The proposed method can be incorporated into the GLM in an easily applicable way that flexibly combines any available auxiliary signals into optimal nuisance regressors. This work has potential significance both for conventional neuroscientific fNIRS experiments as well as for emerging applications of fNIRS in everyday environments, medicine and BCI, where high Contrast to Noise Ratio is of importance for single trial analysis.


Assuntos
Neuroimagem Funcional/normas , Modelos Estatísticos , Espectroscopia de Luz Próxima ao Infravermelho/normas , Adulto , Artefatos , Feminino , Neuroimagem Funcional/métodos , Humanos , Modelos Lineares , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto Jovem
17.
J Chem Phys ; 153(12): 124109, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003761

RESUMO

Modern machine learning force fields (ML-FF) are able to yield energy and force predictions at the accuracy of high-level ab initio methods, but at a much lower computational cost. On the other hand, classical molecular mechanics force fields (MM-FF) employ fixed functional forms and tend to be less accurate, but considerably faster and transferable between molecules of the same class. In this work, we investigate how both approaches can complement each other. We contrast the ability of ML-FF for reconstructing dynamic and thermodynamic observables to MM-FFs in order to gain a qualitative understanding of the differences between the two approaches. This analysis enables us to modify the generalized AMBER force field by reparametrizing short-range and bonded interactions with more expressive terms to make them more accurate, without sacrificing the key properties that make MM-FFs so successful.

18.
J Chem Phys ; 152(19): 194106, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687259

RESUMO

Gradient-domain machine learning (GDML) is an accurate and efficient approach to learn a molecular potential and associated force field based on the kernel ridge regression algorithm. Here, we demonstrate its application to learn an effective coarse-grained (CG) model from all-atom simulation data in a sample efficient manner. The CG force field is learned by following the thermodynamic consistency principle, here by minimizing the error between the predicted CG force and the all-atom mean force in the CG coordinates. Solving this problem by GDML directly is impossible because coarse-graining requires averaging over many training data points, resulting in impractical memory requirements for storing the kernel matrices. In this work, we propose a data-efficient and memory-saving alternative. Using ensemble learning and stratified sampling, we propose a 2-layer training scheme that enables GDML to learn an effective CG model. We illustrate our method on a simple biomolecular system, alanine dipeptide, by reconstructing the free energy landscape of a CG variant of this molecule. Our novel GDML training scheme yields a smaller free energy error than neural networks when the training set is small, and a comparably high accuracy when the training set is sufficiently large.

19.
Neuroimage ; 200: 72-88, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31203024

RESUMO

In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1st and 2nd order statistics and SNR and compare with three established methods: PCA, Spline and Wavelet-based artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the SNR of continuous hemodynamic signals in single channels by up to 10dB, and significantly outperforms conventional methods in the extraction of simulated Hemodynamic Response Functions from strongly contaminated data. The framework and methods presented can serve as an introduction to a new type of multivariate methods for the analysis of fNIRS signals and as a blueprint for artifact rejection in complex environments beyond the applied paradigm.


Assuntos
Artefatos , Córtex Cerebral/fisiologia , Neuroimagem Funcional/métodos , Aprendizado de Máquina , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Córtex Cerebral/diagnóstico por imagem , Neuroimagem Funcional/normas , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/normas
20.
J Chem Phys ; 150(11): 114102, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901990

RESUMO

We present the construction of molecular force fields for small molecules (less than 25 atoms) using the recently developed symmetrized gradient-domain machine learning (sGDML) approach [Chmiela et al., Nat. Commun. 9, 3887 (2018) and Chmiela et al., Sci. Adv. 3, e1603015 (2017)]. This approach is able to accurately reconstruct complex high-dimensional potential-energy surfaces from just a few 100s of molecular conformations extracted from ab initio molecular dynamics trajectories. The data efficiency of the sGDML approach implies that atomic forces for these conformations can be computed with high-level wavefunction-based approaches, such as the "gold standard" coupled-cluster theory with single, double and perturbative triple excitations [CCSD(T)]. We demonstrate that the flexible nature of the sGDML model recovers local and non-local electronic interactions (e.g., H-bonding, proton transfer, lone pairs, changes in hybridization states, steric repulsion, and n → π* interactions) without imposing any restriction on the nature of interatomic potentials. The analysis of sGDML molecular dynamics trajectories yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA