RESUMO
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Assuntos
Comunicação Celular , Endocitose , Membrana Celular/metabolismo , Clatrina/metabolismo , LipídeosRESUMO
The plasma membrane of mammalian cells links transmembrane receptors, various structural components, and membrane-binding proteins to subcellular processes, allowing inter- and intracellular communication. Therefore, membrane-binding proteins, together with structural components such as actin filaments, modulate the cell membrane in their flexibility, stiffness, and curvature. Investigating membrane components and curvature in cells remains challenging due to the diffraction limit in light microscopy. Preparation of 5-15-nm-thin plasma membrane sheets and subsequent inspection by metal replica transmission electron microscopy (TEM) reveal detailed information about the cellular membrane topology, including the structure and curvature. However, electron microscopy cannot identify proteins associated with specific plasma membrane domains. Here, we describe a novel adaptation of correlative super-resolution light microscopy and platinum replica TEM (CLEM-PREM), allowing the analysis of plasma membrane sheets with respect to their structural details, curvature, and associated protein composition. We suggest a number of shortcuts and troubleshooting solutions to contemporary PREM protocols. Thus, implementation of super-resolution stimulated emission depletion (STED) microscopy offers significant reduction in sample preparation time and reduced technical challenges for imaging and analysis. Additionally, highly technical challenges associated with replica preparation and transfer on a TEM grid can be overcome by scanning electron microscopy (SEM) imaging. The combination of STED microscopy and platinum replica SEM or TEM provides the highest spatial resolution of plasma membrane proteins and their underlying membrane and is, therefore, a suitable method to study cellular events like endocytosis, membrane trafficking, or membrane tension adaptations.
RESUMO
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
RESUMO
Rho family GTPases are central regulators of cytoskeletal dynamics controlled by guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). This protocol presents a workflow for a robust high-throughput compatible biosensor assay to analyze changes in Rho GTPase activity by these proteins in the native cellular environment. The procedure can be used for semi-quantitative comparison of GEF/GAP function and extended for analysis of additional modulators. The experimental design is applicable also to other monomolecular ratiometric FRET sensors. For complete details on the use and execution of this protocol, please refer to Müller et al. (2020).
Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas rho de Ligação ao GTP , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas Ativadoras de GTPase/metabolismoRESUMO
The combination of image analysis and superresolution microscopy methods allows for unprecedented insight into the organization of macromolecular assemblies in cells. Advances in deep learning (DL)-based object recognition enable the automated processing of large amounts of data, resulting in high accuracy through averaging. However, while the analysis of highly symmetric structures of constant size allows for a resolution approaching the dimensions of structural biology, DL-based image recognition may introduce bias. This prohibits the development of readouts for processes that involve significant changes in size or shape of amorphous macromolecular complexes. Here we address this problem by using changes of septin ring structures in single molecule localization-based superresolution microscopy data as a paradigm. We identify potential sources of bias resulting from different training approaches by rigorous testing of trained models using real or simulated data covering a wide range of possible results. In a quantitative comparison of our models, we find that a trade-off exists between measurement accuracy and the range of recognized phenotypes. Using our thus verified models, we find that septin ring size can be explained by the number of subunits they are assembled from alone. Furthermore, we provide a new experimental system for the investigation of septin polymerization.
Assuntos
Aprendizado Profundo , Microscopia , Citoesqueleto/química , Substâncias Macromoleculares , Microscopia/métodos , Septinas/química , Imagem Individual de Molécula/métodosRESUMO
Stimulation of renal collecting duct principal cells with antidiuretic hormone (arginine-vasopressin, AVP) results in inhibition of the small GTPase RhoA and the enrichment of the water channel aquaporin-2 (AQP2) in the plasma membrane. The membrane insertion facilitates water reabsorption from primary urine and fine-tuning of body water homeostasis. Rho guanine nucleotide exchange factors (GEFs) interact with RhoA, catalyze the exchange of GDP for GTP and thereby activate the GTPase. However, GEFs involved in the control of AQP2 in renal principal cells are unknown. The A-kinase anchoring protein, AKAP-Lbc, possesses GEF activity, specifically activates RhoA, and is expressed in primary renal inner medullary collecting duct principal (IMCD) cells. Through screening of 18,431 small molecules and synthesis of a focused library around one of the hits, we identified an inhibitor of the interaction of AKAP-Lbc and RhoA. This molecule, Scaff10-8, bound to RhoA, inhibited the AKAP-Lbc-mediated RhoA activation but did not interfere with RhoA activation through other GEFs or activities of other members of the Rho family of small GTPases, Rac1 and Cdc42. Scaff10-8 promoted the redistribution of AQP2 from intracellular vesicles to the periphery of IMCD cells. Thus, our data demonstrate an involvement of AKAP-Lbc-mediated RhoA activation in the control of AQP2 trafficking.
Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Túbulos Renais Coletores/citologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Membrana Celular/efeitos dos fármacos , Células HEK293 , Humanos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-AtividadeRESUMO
Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Células 3T3 , Animais , Carcinogênese/patologia , Domínio Catalítico/fisiologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/patologia , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/metabolismo , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologiaRESUMO
The cGMP-dependent protein kinase I (cGKI) is a key mediator of cGMP signaling, but the specific functions of its two isoforms, cGKIα and cGKIß, are poorly understood. Recent studies indicated a novel cGMP-independent role for cGKIα in redox sensing. To dissect the effects of oxidative stress on the cGKI isoforms, we used mouse embryonic fibroblasts and vascular smooth muscle cells (VSMCs) expressing both, one, or none of them. In cGKIα-expressing cells, but not in cells expressing only cGKIß, incubation with H2O2 induced the formation of a disulfide bond between the two identical subunits of the dimeric enzyme. Oxidation of cGKIα was associated with increased phosphorylation of its substrate, vasodilator-stimulated phosphoprotein. H2O2 did not stimulate cGMP production, indicating that it activates cGKIα directly via oxidation. Interestingly, there was a mutual influence of H2O2 and cGMP on cGKI activity and disulfide bond formation, respectively; preoxidation of the kinase with H2O2 slightly impaired its activation by cGMP, whereas preactivation of the enzyme with cGMP attenuated its oxidation by H2O2. To evaluate the functional relevance of the noncanonical H2O2-cGKIα pathway, we studied the regulation of the cytosolic Ca²âº concentration ([Ca²âº](i)). H2O2 suppressed norepinephrine-induced Ca²âº transients in cGKIα-expressing VSMCs and, to a lower extent, in VSMCs expressing only cGKIß or none of the isoforms. Thus, H2O2 lowers [Ca²âº](i) mainly via a cGKIα-dependent pathway. These results indicate that oxidative stress selectively targets the cGKIα isoform, which then modulates cellular processes in a cGMP-independent manner. A decrease in [Ca²âº](i) in VSMCs via activation of cGKIα might be a major mechanism of H2O2-induced vasodilation.